Skip to content
Snippets Groups Projects
nr-ue.c 39.3 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
 * the OAI Public License, Version 1.0  (the "License"); you may not use this file
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */

#define _GNU_SOURCE // For pthread_setname_np
#include <pthread.h>
#include <openair1/PHY/impl_defs_top.h>
#include "executables/nr-uesoftmodem.h"
#include "PHY/phy_extern_nr_ue.h"
#include "PHY/INIT/nr_phy_init.h"
#include "NR_MAC_UE/mac_proto.h"
#include "RRC/NR_UE/rrc_proto.h"
#include "SCHED_NR_UE/phy_frame_config_nr.h"
#include "SCHED_NR_UE/defs.h"
#include "PHY/NR_UE_TRANSPORT/nr_transport_proto_ue.h"
#include "executables/softmodem-common.h"
#include "PHY/NR_REFSIG/refsig_defs_ue.h"
#include "radio/COMMON/common_lib.h"
#include "LAYER2/nr_pdcp/nr_pdcp_oai_api.h"

/*
 *  NR SLOT PROCESSING SEQUENCE
 *
 *  Processing occurs with following steps for connected mode:
 *
 *  - Rx samples for a slot are received,
 *  - PDCCH processing (including DCI extraction for downlink and uplink),
 *  - PDSCH processing (including transport blocks decoding),
 *  - PUCCH/PUSCH (transmission of acknowledgements, CSI, ... or data).
 *
 *  Time between reception of the slot and related transmission depends on UE processing performance.
 *  It is defined by the value NR_UE_CAPABILITY_SLOT_RX_TO_TX.
 *
 *  In NR, network gives the duration between Rx slot and Tx slot in the DCI:
 *  - for reception of a PDSCH and its associated acknowledgment slot (with a PUCCH or a PUSCH),
 *  - for reception of an uplink grant and its associated PUSCH slot.
 *
 *  So duration between reception and it associated transmission depends on its transmission slot given in the DCI.
 *  NR_UE_CAPABILITY_SLOT_RX_TO_TX means the minimum duration but higher duration can be given by the network because UE can support it.
 *
 *                                                                                                    Slot k
 *                                                                                  -------+------------+--------
 *                Frame                                                                    | Tx samples |
 *                Subframe                                                                 |   buffer   |
 *                Slot n                                                            -------+------------+--------
 *       ------ +------------+--------                                                     |
 *              | Rx samples |                                                             |
 *              |   buffer   |                                                             |
 *       -------+------------+--------                                                     |
 *                           |                                                             |
 *                           V                                                             |
 *                           +------------+                                                |
 *                           |   PDCCH    |                                                |
 *                           | processing |                                                |
 *                           +------------+                                                |
 *                           |            |                                                |
 *                           |            v                                                |
 *                           |            +------------+                                   |
 *                           |            |   PDSCH    |                                   |
 *                           |            | processing | decoding result                   |
 *                           |            +------------+    -> ACK/NACK of PDSCH           |
 *                           |                         |                                   |
 *                           |                         v                                   |
 *                           |                         +-------------+------------+        |
 *                           |                         | PUCCH/PUSCH | Tx samples |        |
 *                           |                         |  processing | transfer   |        |
 *                           |                         +-------------+------------+        |
 *                           |                                                             |
 *                           |/___________________________________________________________\|
 *                            \  duration between reception and associated transmission   /
 *
 * Remark: processing is done slot by slot, it can be distribute on different threads which are executed in parallel.
 * This is an architecture optimization in order to cope with real time constraints.
 * By example, for LTE, subframe processing is spread over 4 different threads.
 *
 */


#define RX_JOB_ID 0x1010
#define TX_JOB_ID 100

typedef enum {
  pss = 0,
  pbch = 1,
  si = 2
} sync_mode_t;

static void *NRUE_phy_stub_standalone_pnf_task(void *arg);

static size_t dump_L1_UE_meas_stats(PHY_VARS_NR_UE *ue, char *output, size_t max_len)
{
  const char *begin = output;
  const char *end = output + max_len;
  output += print_meas_log(&ue->phy_proc_tx, "L1 TX processing", NULL, NULL, output, end - output);
  output += print_meas_log(&ue->ulsch_encoding_stats, "ULSCH encoding", NULL, NULL, output, end - output);
  output += print_meas_log(&ue->phy_proc_rx, "L1 RX processing", NULL, NULL, output, end - output);
  output += print_meas_log(&ue->ue_ul_indication_stats, "UL Indication", NULL, NULL, output, end - output);
  output += print_meas_log(&ue->rx_pdsch_stats, "PDSCH receiver", NULL, NULL, output, end - output);
  output += print_meas_log(&ue->dlsch_decoding_stats, "PDSCH decoding", NULL, NULL, output, end - output);
  output += print_meas_log(&ue->dlsch_deinterleaving_stats, " -> Deinterleive", NULL, NULL, output, end - output);
  output += print_meas_log(&ue->dlsch_rate_unmatching_stats, " -> Rate Unmatch", NULL, NULL, output, end - output);
  output += print_meas_log(&ue->dlsch_ldpc_decoding_stats, " ->  LDPC Decode", NULL, NULL, output, end - output);
  output += print_meas_log(&ue->dlsch_unscrambling_stats, "PDSCH unscrambling", NULL, NULL, output, end - output);
  output += print_meas_log(&ue->dlsch_rx_pdcch_stats, "PDCCH handling", NULL, NULL, output, end - output);
  return output - begin;
}

static void *nrL1_UE_stats_thread(void *param)
{
  PHY_VARS_NR_UE *ue = (PHY_VARS_NR_UE *) param;
  const int max_len = 16384;
  char output[max_len];
  char filename[30];
  snprintf(filename, 29, "nrL1_UE_stats-%d.log", ue->Mod_id);
  filename[29] = 0;
  FILE *fd = fopen(filename, "w");
  AssertFatal(fd != NULL, "Cannot open %s\n", filename);

  while (!oai_exit) {
    sleep(1);
    const int len = dump_L1_UE_meas_stats(ue, output, max_len);
    AssertFatal(len < max_len, "exceeded length\n");
    fwrite(output, len + 1, 1, fd); // + 1 for terminating NULL byte
    fflush(fd);
    fseek(fd, 0, SEEK_SET);
  }
  fclose(fd);

  return NULL;
}

void init_nr_ue_vars(PHY_VARS_NR_UE *ue,
                     uint8_t UE_id,
                     uint8_t abstraction_flag)
{

  int nb_connected_gNB = 1;

  ue->Mod_id      = UE_id;
  ue->if_inst     = nr_ue_if_module_init(0);
  ue->dci_thres   = 0;
  ue->target_Nid_cell = -1;

  // initialize all signal buffers
  init_nr_ue_signal(ue, nb_connected_gNB);

  // intialize transport
  init_nr_ue_transport(ue);

  // init N_TA offset
  init_N_TA_offset(ue);
}

void init_nrUE_standalone_thread(int ue_idx)
{
  int standalone_tx_port = 3611 + ue_idx * 2;
  int standalone_rx_port = 3612 + ue_idx * 2;
  nrue_init_standalone_socket(standalone_tx_port, standalone_rx_port);

  NR_UE_MAC_INST_t *mac = get_mac_inst(0);
  pthread_mutex_init(&mac->mutex_dl_info, NULL);

  pthread_t thread;
  if (pthread_create(&thread, NULL, nrue_standalone_pnf_task, NULL) != 0) {
    LOG_E(NR_MAC, "pthread_create failed for calling nrue_standalone_pnf_task");
  }
  pthread_setname_np(thread, "oai:nrue-stand");
  pthread_t phy_thread;
  if (pthread_create(&phy_thread, NULL, NRUE_phy_stub_standalone_pnf_task, NULL) != 0) {
    LOG_E(NR_MAC, "pthread_create failed for calling NRUE_phy_stub_standalone_pnf_task");
  }
  pthread_setname_np(phy_thread, "oai:nrue-stand-phy");
}

static void process_queued_nr_nfapi_msgs(NR_UE_MAC_INST_t *mac, int sfn_slot)
{
  nfapi_nr_rach_indication_t *rach_ind = unqueue_matching(&nr_rach_ind_queue, MAX_QUEUE_SIZE, sfn_slot_matcher, &sfn_slot);
  nfapi_nr_dl_tti_request_t *dl_tti_request = get_queue(&nr_dl_tti_req_queue);
  nfapi_nr_ul_dci_request_t *ul_dci_request = get_queue(&nr_ul_dci_req_queue);

  for (int i = 0; i < NR_MAX_HARQ_PROCESSES; i++) {
    LOG_D(NR_MAC, "Try to get a ul_tti_req by matching CRC active SFN %d/SLOT %d from queue with %lu items\n",
            NFAPI_SFNSLOT2SFN(mac->nr_ue_emul_l1.harq[i].active_ul_harq_sfn_slot),
            NFAPI_SFNSLOT2SLOT(mac->nr_ue_emul_l1.harq[i].active_ul_harq_sfn_slot), nr_ul_tti_req_queue.num_items);
    nfapi_nr_ul_tti_request_t *ul_tti_request_crc = unqueue_matching(&nr_ul_tti_req_queue, MAX_QUEUE_SIZE, sfn_slot_matcher, &mac->nr_ue_emul_l1.harq[i].active_ul_harq_sfn_slot);
    if (ul_tti_request_crc && ul_tti_request_crc->n_pdus > 0) {
      check_and_process_dci(NULL, NULL, NULL, ul_tti_request_crc);
      free_and_zero(ul_tti_request_crc);
    }
  }

  if (rach_ind && rach_ind->number_of_pdus > 0) {
      NR_UL_IND_t UL_INFO = {
        .rach_ind = *rach_ind,
      };
      send_nsa_standalone_msg(&UL_INFO, rach_ind->header.message_id);
      for (int i = 0; i < rach_ind->number_of_pdus; i++)
      {
        free_and_zero(rach_ind->pdu_list[i].preamble_list);
      }
      free_and_zero(rach_ind->pdu_list);
      free_and_zero(rach_ind);
  }
  if (dl_tti_request) {
    int dl_tti_sfn_slot = NFAPI_SFNSLOT2HEX(dl_tti_request->SFN, dl_tti_request->Slot);
    nfapi_nr_tx_data_request_t *tx_data_request = unqueue_matching(&nr_tx_req_queue, MAX_QUEUE_SIZE, sfn_slot_matcher, &dl_tti_sfn_slot);
    if (!tx_data_request) {
      LOG_E(NR_MAC, "[%d %d] No corresponding tx_data_request for given dl_tti_request sfn/slot\n",
            NFAPI_SFNSLOT2SFN(dl_tti_sfn_slot), NFAPI_SFNSLOT2SLOT(dl_tti_sfn_slot));
      if (get_softmodem_params()->nsa)
        save_nr_measurement_info(dl_tti_request);
      free_and_zero(dl_tti_request);
    }
    else if (dl_tti_request->dl_tti_request_body.nPDUs > 0 && tx_data_request->Number_of_PDUs > 0) {
      if (get_softmodem_params()->nsa)
        save_nr_measurement_info(dl_tti_request);
      check_and_process_dci(dl_tti_request, tx_data_request, NULL, NULL);
      free_and_zero(dl_tti_request);
      free_and_zero(tx_data_request);
    }
    else {
      AssertFatal(false, "We dont have PDUs in either dl_tti %d or tx_req %d\n",
                  dl_tti_request->dl_tti_request_body.nPDUs, tx_data_request->Number_of_PDUs);
    }
  }
  if (ul_dci_request && ul_dci_request->numPdus > 0) {
    check_and_process_dci(NULL, NULL, ul_dci_request, NULL);
    free_and_zero(ul_dci_request);
  }
}

static void *NRUE_phy_stub_standalone_pnf_task(void *arg)
{
  LOG_I(MAC, "Clearing Queues\n");
  reset_queue(&nr_rach_ind_queue);
  reset_queue(&nr_rx_ind_queue);
  reset_queue(&nr_crc_ind_queue);
  reset_queue(&nr_uci_ind_queue);
  reset_queue(&nr_dl_tti_req_queue);
  reset_queue(&nr_tx_req_queue);
  reset_queue(&nr_ul_dci_req_queue);
  reset_queue(&nr_ul_tti_req_queue);

  int last_sfn_slot = -1;
  uint16_t sfn_slot = 0;

  module_id_t mod_id = 0;
  NR_UE_MAC_INST_t *mac = get_mac_inst(mod_id);
  for (int i = 0; i < NR_MAX_HARQ_PROCESSES; i++) {
      mac->nr_ue_emul_l1.harq[i].active = false;
      mac->nr_ue_emul_l1.harq[i].active_ul_harq_sfn_slot = -1;
  }

  while (!oai_exit) {
    if (sem_wait(&sfn_slot_semaphore) != 0) {
      LOG_E(NR_MAC, "sem_wait() error\n");
      abort();
    }
    uint16_t *slot_ind = get_queue(&nr_sfn_slot_queue);
    nr_phy_channel_params_t *ch_info = get_queue(&nr_chan_param_queue);
    if (!slot_ind && !ch_info) {
      LOG_D(MAC, "get nr_sfn_slot_queue and nr_chan_param_queue == NULL!\n");
      continue;
    }
    if (slot_ind) {
      sfn_slot = *slot_ind;
      free_and_zero(slot_ind);
    }
    else if (ch_info) {
      sfn_slot = ch_info->sfn_slot;
      free_and_zero(ch_info);
    }

    frame_t frame = NFAPI_SFNSLOT2SFN(sfn_slot);
    int slot = NFAPI_SFNSLOT2SLOT(sfn_slot);
    if (sfn_slot == last_sfn_slot) {
      LOG_D(NR_MAC, "repeated sfn_sf = %d.%d\n",
            frame, slot);
      continue;
    }
    last_sfn_slot = sfn_slot;

    LOG_D(NR_MAC, "The received sfn/slot [%d %d] from proxy\n",
          frame, slot);

    if (get_softmodem_params()->sa && mac->mib == NULL) {
      LOG_D(NR_MAC, "We haven't gotten MIB. Lets see if we received it\n");
      nr_ue_dl_indication(&mac->dl_info);
      process_queued_nr_nfapi_msgs(mac, sfn_slot);
    }

    int CC_id = 0;
    uint8_t gNB_id = 0;
    nr_uplink_indication_t ul_info;
    int slots_per_frame = 20; //30 kHZ subcarrier spacing
    int slot_ahead = 2; // TODO: Make this dynamic
    ul_info.cc_id = CC_id;
    ul_info.gNB_index = gNB_id;
    ul_info.module_id = mod_id;
    ul_info.frame_rx = frame;
    ul_info.slot_rx = slot;
    ul_info.slot_tx = (slot + slot_ahead) % slots_per_frame;
    ul_info.frame_tx = (ul_info.slot_rx + slot_ahead >= slots_per_frame) ? ul_info.frame_rx + 1 : ul_info.frame_rx;

    if (pthread_mutex_lock(&mac->mutex_dl_info)) abort();

    if (ch_info) {
      mac->nr_ue_emul_l1.pmi = ch_info->csi[0].pmi;
      mac->nr_ue_emul_l1.ri = ch_info->csi[0].ri;
      mac->nr_ue_emul_l1.cqi = ch_info->csi[0].cqi;
      free_and_zero(ch_info);
    }

    if (is_nr_DL_slot(mac->tdd_UL_DL_ConfigurationCommon,
                      ul_info.slot_rx)) {
      memset(&mac->dl_info, 0, sizeof(mac->dl_info));
      mac->dl_info.cc_id = CC_id;
      mac->dl_info.gNB_index = gNB_id;
      mac->dl_info.module_id = mod_id;
      mac->dl_info.frame = frame;
      mac->dl_info.slot = slot;
      mac->dl_info.dci_ind = NULL;
      mac->dl_info.rx_ind = NULL;
      nr_ue_dl_indication(&mac->dl_info);
    }

    if (pthread_mutex_unlock(&mac->mutex_dl_info)) abort();

    if (is_nr_UL_slot(mac->tdd_UL_DL_ConfigurationCommon,
                      ul_info.slot_tx, mac->frame_type)) {
      LOG_D(NR_MAC, "Slot %d. calling nr_ue_ul_ind()\n", ul_info.slot_tx);
      nr_ue_ul_scheduler(&ul_info);
    }
    process_queued_nr_nfapi_msgs(mac, sfn_slot);
  }
  return NULL;
}


/*!
 * It performs band scanning and synchonization.
 * \param arg is a pointer to a \ref PHY_VARS_NR_UE structure.
 */

typedef nr_rxtx_thread_data_t syncData_t;

static void UE_synch(void *arg) {
  syncData_t *syncD=(syncData_t *) arg;
  int i, hw_slot_offset;
  PHY_VARS_NR_UE *UE = syncD->UE;
  sync_mode_t sync_mode = pbch;
  //int CC_id = UE->CC_id;
  static int freq_offset=0;
  UE->is_synchronized = 0;

  if (UE->UE_scan == 0) {

    for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {

      LOG_I( PHY, "[SCHED][UE] Check absolute frequency DL %f, UL %f (RF card %d, oai_exit %d, channel %d, rx_num_channels %d)\n",
        openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i],
        openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i],
        UE->rf_map.card,
        oai_exit,
        i,
        openair0_cfg[0].rx_num_channels);

    }

    sync_mode = pbch;
  } else {
    LOG_E(PHY,"Fixme!\n");
    /*
    for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
      downlink_frequency[UE->rf_map.card][UE->rf_map.chain+i] = bands_to_scan.band_info[CC_id].dl_min;
      uplink_frequency_offset[UE->rf_map.card][UE->rf_map.chain+i] =
        bands_to_scan.band_info[CC_id].ul_min-bands_to_scan.band_info[CC_id].dl_min;
      openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i];
      openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] =
        downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i];
      openair0_cfg[UE->rf_map.card].rx_gain[UE->rf_map.chain+i] = UE->rx_total_gain_dB;
    }
    */
  }

  if (UE->target_Nid_cell != -1) {
    LOG_W(NR_PHY, "Starting re-sync detection for target Nid_cell %i\n", UE->target_Nid_cell);
  } else {
    LOG_W(NR_PHY, "Starting sync detection\n");
  }

  switch (sync_mode) {
    /*
    case pss:
      LOG_I(PHY,"[SCHED][UE] Scanning band %d (%d), freq %u\n",bands_to_scan.band_info[current_band].band, current_band,bands_to_scan.band_info[current_band].dl_min+current_offset);
      //lte_sync_timefreq(UE,current_band,bands_to_scan.band_info[current_band].dl_min+current_offset);
      current_offset += 20000000; // increase by 20 MHz

      if (current_offset > bands_to_scan.band_info[current_band].dl_max-bands_to_scan.band_info[current_band].dl_min) {
        current_band++;
        current_offset=0;
      }

      if (current_band==bands_to_scan.nbands) {
        current_band=0;
        oai_exit=1;
      }

      for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
        downlink_frequency[UE->rf_map.card][UE->rf_map.chain+i] = bands_to_scan.band_info[current_band].dl_min+current_offset;
        uplink_frequency_offset[UE->rf_map.card][UE->rf_map.chain+i] = bands_to_scan.band_info[current_band].ul_min-bands_to_scan.band_info[0].dl_min + current_offset;
        openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i];
        openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i];
        openair0_cfg[UE->rf_map.card].rx_gain[UE->rf_map.chain+i] = UE->rx_total_gain_dB;

        if (UE->UE_scan_carrier) {
          openair0_cfg[UE->rf_map.card].autocal[UE->rf_map.chain+i] = 1;
        }
      }

      break;
    */
    case pbch:
      LOG_I(PHY, "[UE thread Synch] Running Initial Synch \n");

      uint64_t dl_carrier, ul_carrier;
      nr_get_carrier_frequencies(UE, &dl_carrier, &ul_carrier);

      if (nr_initial_sync(&syncD->proc, UE, 2, get_softmodem_params()->sa) == 0) {
        freq_offset = UE->common_vars.freq_offset; // frequency offset computed with pss in initial sync
        hw_slot_offset = ((UE->rx_offset<<1) / UE->frame_parms.samples_per_subframe * UE->frame_parms.slots_per_subframe) +
                         round((float)((UE->rx_offset<<1) % UE->frame_parms.samples_per_subframe)/UE->frame_parms.samples_per_slot0);

        // rerun with new cell parameters and frequency-offset
        // todo: the freq_offset computed on DL shall be scaled before being applied to UL
        nr_rf_card_config_freq(&openair0_cfg[UE->rf_map.card], ul_carrier, dl_carrier, freq_offset);

        LOG_I(PHY,"Got synch: hw_slot_offset %d, carrier off %d Hz, rxgain %f (DL %f Hz, UL %f Hz)\n",
              hw_slot_offset,
              freq_offset,
              openair0_cfg[UE->rf_map.card].rx_gain[0],
              openair0_cfg[UE->rf_map.card].rx_freq[0],
              openair0_cfg[UE->rf_map.card].tx_freq[0]);

        UE->rfdevice.trx_set_freq_func(&UE->rfdevice,&openair0_cfg[0]);
        if (UE->UE_scan_carrier == 1) {
          UE->UE_scan_carrier = 0;
        } else {
          UE->is_synchronized = 1;
        }
        if (UE->synch_request.received_synch_request == 1) {
          UE->is_synchronized = 0;
          UE->synch_request.received_synch_request = 0;
        }
      } else {

        if (UE->UE_scan_carrier == 1) {

          if (freq_offset >= 0)
            freq_offset += 100;

          freq_offset *= -1;

          nr_rf_card_config_freq(&openair0_cfg[UE->rf_map.card], ul_carrier, dl_carrier, freq_offset);

          LOG_I(PHY, "Initial sync failed: trying carrier off %d Hz\n", freq_offset);

          UE->rfdevice.trx_set_freq_func(&UE->rfdevice,&openair0_cfg[0]);
        }
      }
      break;

    case si:
    default:
      break;

  }
}

static void RU_write(nr_rxtx_thread_data_t *rxtxD) {

  PHY_VARS_NR_UE *UE = rxtxD->UE;
  UE_nr_rxtx_proc_t *proc = &rxtxD->proc;

  void *txp[NB_ANTENNAS_TX];
  int slot = proc->nr_slot_tx;
  for (int i = 0; i < UE->frame_parms.nb_antennas_tx; i++)
    txp[i] = (void *)&UE->common_vars.txData[i][UE->frame_parms.get_samples_slot_timestamp(slot, &UE->frame_parms, 0)];

  radio_tx_burst_flag_t flags = TX_BURST_INVALID;

  NR_UE_MAC_INST_t *mac = get_mac_inst(0);
  if (mac->phy_config_request_sent &&
      openair0_cfg[0].duplex_mode == duplex_mode_TDD &&
      !get_softmodem_params()->continuous_tx) {

    int slots_frame = UE->frame_parms.slots_per_frame;
    int curr_slot = nr_ue_slot_select(&UE->nrUE_config, slot);
    if (curr_slot != NR_DOWNLINK_SLOT) {
      int next_slot = nr_ue_slot_select(&UE->nrUE_config, (slot + 1) % slots_frame);
      int prev_slot = nr_ue_slot_select(&UE->nrUE_config, (slot + slots_frame - 1) % slots_frame);
      if (prev_slot == NR_DOWNLINK_SLOT)
        flags = TX_BURST_START;
      else if (next_slot == NR_DOWNLINK_SLOT)
        flags = TX_BURST_END;
      else
        flags = TX_BURST_MIDDLE;
    }
  } else {
    flags = TX_BURST_MIDDLE;
  }

  if (flags || IS_SOFTMODEM_RFSIM)
    AssertFatal(rxtxD->writeBlockSize ==
                UE->rfdevice.trx_write_func(&UE->rfdevice,
                                            proc->timestamp_tx,
                                            txp,
                                            rxtxD->writeBlockSize,
                                            UE->frame_parms.nb_antennas_tx,
                                            flags),"");

  for (int i=0; i<UE->frame_parms.nb_antennas_tx; i++)
    memset(txp[i], 0, rxtxD->writeBlockSize);

}

void processSlotTX(void *arg) {

  nr_rxtx_thread_data_t *rxtxD = (nr_rxtx_thread_data_t *) arg;
  UE_nr_rxtx_proc_t *proc = &rxtxD->proc;
  PHY_VARS_NR_UE    *UE   = rxtxD->UE;
  nr_phy_data_tx_t phy_data = {0};

  LOG_D(PHY,"%d.%d => slot type %d\n", proc->frame_tx, proc->nr_slot_tx, proc->tx_slot_type);
  if (proc->tx_slot_type == NR_UPLINK_SLOT || proc->tx_slot_type == NR_MIXED_SLOT){

    // wait for rx slots to send indication (if any) that DLSCH decoding is finished
    for(int i=0; i < rxtxD->tx_wait_for_dlsch; i++) {
      notifiedFIFO_elt_t *res = pullNotifiedFIFO(UE->tx_resume_ind_fifo[proc->nr_slot_tx]);
      delNotifiedFIFO_elt(res);
    }

    // trigger L2 to run ue_scheduler thru IF module
    // [TODO] mapping right after NR initial sync
    if(UE->if_inst != NULL && UE->if_inst->ul_indication != NULL) {
      start_meas(&UE->ue_ul_indication_stats);
      nr_uplink_indication_t ul_indication;
      memset((void*)&ul_indication, 0, sizeof(ul_indication));

      ul_indication.module_id = UE->Mod_id;
      ul_indication.gNB_index = proc->gNB_id;
      ul_indication.cc_id     = UE->CC_id;
      ul_indication.frame_rx  = proc->frame_rx;
      ul_indication.slot_rx   = proc->nr_slot_rx;
      ul_indication.frame_tx  = proc->frame_tx;
      ul_indication.slot_tx   = proc->nr_slot_tx;
      ul_indication.phy_data      = &phy_data;

      UE->if_inst->ul_indication(&ul_indication);
      stop_meas(&UE->ue_ul_indication_stats);
    }

    phy_procedures_nrUE_TX(UE, proc, &phy_data);
  }

  RU_write(rxtxD);
}

nr_phy_data_t UE_dl_preprocessing(PHY_VARS_NR_UE *UE, UE_nr_rxtx_proc_t *proc)
{
  nr_phy_data_t phy_data = {0};

  if (IS_SOFTMODEM_NOS1 || get_softmodem_params()->sa) {

    // Start synchronization with a target gNB
    if (UE->synch_request.received_synch_request == 1 && UE->target_Nid_cell == -1) {
      UE->is_synchronized = 0;
      UE->target_Nid_cell = UE->synch_request.synch_req.target_Nid_cell;
      clean_UE_ulsch(UE, proc->gNB_id);
    } else if (UE->synch_request.received_synch_request == 1 && UE->target_Nid_cell != -1) {
      UE->synch_request.received_synch_request = 0;
      UE->target_Nid_cell = -1;
    }

    /* send tick to RLC and PDCP every ms */
    if (proc->nr_slot_rx % UE->frame_parms.slots_per_subframe == 0) {
      void nr_rlc_tick(int frame, int subframe);
      void nr_pdcp_tick(int frame, int subframe);
      nr_rlc_tick(proc->frame_rx, proc->nr_slot_rx / UE->frame_parms.slots_per_subframe);
      nr_pdcp_tick(proc->frame_rx, proc->nr_slot_rx / UE->frame_parms.slots_per_subframe);
    }
  }

  if (proc->rx_slot_type == NR_DOWNLINK_SLOT || proc->rx_slot_type == NR_MIXED_SLOT) {

    if(UE->if_inst != NULL && UE->if_inst->dl_indication != NULL) {
      nr_downlink_indication_t dl_indication;
      nr_fill_dl_indication(&dl_indication, NULL, NULL, proc, UE, &phy_data);
      UE->if_inst->dl_indication(&dl_indication);
    }

    uint64_t a=rdtsc_oai();
    pbch_pdcch_processing(UE, proc, &phy_data);
    if (phy_data.dlsch[0].active) {
      // indicate to tx thread to wait for DLSCH decoding
      const int ack_nack_slot = (proc->nr_slot_rx + phy_data.dlsch[0].dlsch_config.k1_feedback) % UE->frame_parms.slots_per_frame;
      UE->tx_wait_for_dlsch[ack_nack_slot]++;
    }

    LOG_D(PHY, "In %s: slot %d, time %llu\n", __FUNCTION__, proc->nr_slot_rx, (rdtsc_oai()-a)/3500);
  }

  ue_ta_procedures(UE, proc->nr_slot_tx, proc->frame_tx);
  return phy_data;
}

void UE_dl_processing(void *arg) {
  nr_rxtx_thread_data_t *rxtxD = (nr_rxtx_thread_data_t *) arg;
  UE_nr_rxtx_proc_t *proc = &rxtxD->proc;
  PHY_VARS_NR_UE    *UE   = rxtxD->UE;
  nr_phy_data_t *phy_data = &rxtxD->phy_data;

  pdsch_processing(UE, proc, phy_data);
}

void dummyWrite(PHY_VARS_NR_UE *UE,openair0_timestamp timestamp, int writeBlockSize) {
  void *dummy_tx[UE->frame_parms.nb_antennas_tx];
  int16_t dummy_tx_data[UE->frame_parms.nb_antennas_tx][2*writeBlockSize]; // 2 because the function we call use pairs of int16_t implicitly as complex numbers
  memset(dummy_tx_data, 0, sizeof(dummy_tx_data));
  for (int i=0; i<UE->frame_parms.nb_antennas_tx; i++)
    dummy_tx[i]=dummy_tx_data[i];

  AssertFatal( writeBlockSize ==
               UE->rfdevice.trx_write_func(&UE->rfdevice,
               timestamp,
               dummy_tx,
               writeBlockSize,
               UE->frame_parms.nb_antennas_tx,
               4),"");

}

void readFrame(PHY_VARS_NR_UE *UE,  openair0_timestamp *timestamp, bool toTrash) {

  void *rxp[NB_ANTENNAS_RX];

  for(int x=0; x<20; x++) {  // two frames for initial sync
    for (int slot=0; slot<UE->frame_parms.slots_per_subframe; slot ++ ) {
      for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++) {
        if (toTrash)
          rxp[i]=malloc16(UE->frame_parms.get_samples_per_slot(slot,&UE->frame_parms)*4);
        else
          rxp[i] = ((void *)&UE->common_vars.rxdata[i][0]) +
                   4*((x*UE->frame_parms.samples_per_subframe)+
                   UE->frame_parms.get_samples_slot_timestamp(slot,&UE->frame_parms,0));
      }
        
      AssertFatal( UE->frame_parms.get_samples_per_slot(slot,&UE->frame_parms) ==
                   UE->rfdevice.trx_read_func(&UE->rfdevice,
                   timestamp,
                   rxp,
                   UE->frame_parms.get_samples_per_slot(slot,&UE->frame_parms),
                   UE->frame_parms.nb_antennas_rx), "");

      if (IS_SOFTMODEM_RFSIM)
        dummyWrite(UE,*timestamp, UE->frame_parms.get_samples_per_slot(slot,&UE->frame_parms));
      if (toTrash)
        for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++)
          free(rxp[i]);
    }
  }

}

void syncInFrame(PHY_VARS_NR_UE *UE, openair0_timestamp *timestamp) {

    LOG_I(PHY,"Resynchronizing RX by %d samples\n",UE->rx_offset);

    if (IS_SOFTMODEM_IQPLAYER || IS_SOFTMODEM_IQRECORDER) {
      // Resynchonize by slot (will work with numerology 1 only)
      for ( int size=UE->rx_offset ; size > 0 ; size -= UE->frame_parms.samples_per_subframe/2 ) {
	int unitTransfer=size>UE->frame_parms.samples_per_subframe/2 ? UE->frame_parms.samples_per_subframe/2 : size ;
	AssertFatal(unitTransfer ==
		    UE->rfdevice.trx_read_func(&UE->rfdevice,
					       timestamp,
					       (void **)UE->common_vars.rxdata,
					       unitTransfer,
					       UE->frame_parms.nb_antennas_rx),"");
      }
    } else {
      *timestamp += UE->frame_parms.get_samples_per_slot(1,&UE->frame_parms);
      for ( int size=UE->rx_offset ; size > 0 ; size -= UE->frame_parms.samples_per_subframe ) {
	int unitTransfer=size>UE->frame_parms.samples_per_subframe ? UE->frame_parms.samples_per_subframe : size ;
	// we write before read because gNB waits for UE to write and both executions halt
	// this happens here as the read size is samples_per_subframe which is very much larger than samp_per_slot
	if (IS_SOFTMODEM_RFSIM) dummyWrite(UE,*timestamp, unitTransfer);
	AssertFatal(unitTransfer ==
		    UE->rfdevice.trx_read_func(&UE->rfdevice,
					       timestamp,
					       (void **)UE->common_vars.rxdata,
					       unitTransfer,
					       UE->frame_parms.nb_antennas_rx),"");
	*timestamp += unitTransfer; // this does not affect the read but needed for RFSIM write
      }
    }
}

static inline int get_firstSymSamp(uint16_t slot, NR_DL_FRAME_PARMS *fp) {
  if (fp->numerology_index == 0)
    return fp->nb_prefix_samples0 + fp->ofdm_symbol_size;
  int num_samples = (slot%(fp->slots_per_subframe/2)) ? fp->nb_prefix_samples : fp->nb_prefix_samples0;
  num_samples += fp->ofdm_symbol_size;
  return num_samples;
}

static inline int get_readBlockSize(uint16_t slot, NR_DL_FRAME_PARMS *fp) {
  int rem_samples = fp->get_samples_per_slot(slot, fp) - get_firstSymSamp(slot, fp);
  int next_slot_first_symbol = 0;
  if (slot < (fp->slots_per_frame-1))
    next_slot_first_symbol = get_firstSymSamp(slot+1, fp);
  return rem_samples + next_slot_first_symbol;
}

void *UE_thread(void *arg)
{
  //this thread should be over the processing thread to keep in real time
  PHY_VARS_NR_UE *UE = (PHY_VARS_NR_UE *) arg;
  //  int tx_enabled = 0;
  openair0_timestamp timestamp, writeTimestamp;
  void *rxp[NB_ANTENNAS_RX];
  int start_rx_stream = 0;
  fapi_nr_config_request_t *cfg = &UE->nrUE_config;
  AssertFatal(0== openair0_device_load(&(UE->rfdevice), &openair0_cfg[0]), "");
  UE->rfdevice.host_type = RAU_HOST;
  UE->is_synchronized = 0;
  AssertFatal(UE->rfdevice.trx_start_func(&UE->rfdevice) == 0, "Could not start the device\n");

  notifiedFIFO_t nf;
  initNotifiedFIFO(&nf);

  notifiedFIFO_t txFifo;
  initNotifiedFIFO(&txFifo);

  notifiedFIFO_t freeBlocks;
  initNotifiedFIFO_nothreadSafe(&freeBlocks);

  int timing_advance = UE->timing_advance;
  NR_UE_MAC_INST_t *mac = get_mac_inst(0);

  bool syncRunning=false;
  const int nb_slot_frame = UE->frame_parms.slots_per_frame;
  int absolute_slot=0, decoded_frame_rx=INT_MAX, trashed_frames=0;
  initNotifiedFIFO(&UE->phy_config_ind);

  int num_ind_fifo = nb_slot_frame;
  for(int i=0; i < num_ind_fifo; i++) {
    UE->tx_wait_for_dlsch[num_ind_fifo] = 0;
    UE->tx_resume_ind_fifo[i] = malloc(sizeof(*UE->tx_resume_ind_fifo[i]));
    initNotifiedFIFO(UE->tx_resume_ind_fifo[i]);
  }

  while (!oai_exit) {

    if (syncRunning) {
      notifiedFIFO_elt_t *res=tryPullTpool(&nf,&(get_nrUE_params()->Tpool));

      if (res) {
        syncRunning=false;
        if (UE->is_synchronized) {
          decoded_frame_rx = mac->mib_frame;
          LOG_I(PHY,"UE synchronized decoded_frame_rx=%d UE->init_sync_frame=%d trashed_frames=%d\n",
                decoded_frame_rx,
                UE->init_sync_frame,
                trashed_frames);
          // shift the frame index with all the frames we trashed meanwhile we perform the synch search
          decoded_frame_rx = (decoded_frame_rx + UE->init_sync_frame + trashed_frames) % MAX_FRAME_NUMBER;
        }
        delNotifiedFIFO_elt(res);
        start_rx_stream=0;
      } else {
	if (IS_SOFTMODEM_IQPLAYER || IS_SOFTMODEM_IQRECORDER) {
	  // For IQ recorder/player we force synchronization to happen in 280 ms
	  while (trashed_frames != 28) {
	    readFrame(UE, &timestamp, true);
	    trashed_frames+=2;
	  }
	} else {
	  readFrame(UE, &timestamp, true);
	  trashed_frames+=2;
	}
        continue;
      }
    }

    AssertFatal( !syncRunning, "At this point synchronization can't be running\n");

    if (!UE->is_synchronized) {
      readFrame(UE, &timestamp, false);
      notifiedFIFO_elt_t *Msg = newNotifiedFIFO_elt(sizeof(syncData_t), 0, &nf, UE_synch);
      syncData_t *syncMsg = (syncData_t *)NotifiedFifoData(Msg);
      syncMsg->UE = UE;
      memset(&syncMsg->proc, 0, sizeof(syncMsg->proc));
      pushTpool(&(get_nrUE_params()->Tpool), Msg);
      trashed_frames = 0;
      syncRunning = true;
      continue;
    }

    if (start_rx_stream == 0) {
      start_rx_stream=1;
      syncInFrame(UE, &timestamp);
      UE->rx_offset=0;
      UE->time_sync_cell=0;
      // read in first symbol
      AssertFatal (UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0 ==
                   UE->rfdevice.trx_read_func(&UE->rfdevice,
                                              &timestamp,
                                              (void **)UE->common_vars.rxdata,
                                              UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0,
                                              UE->frame_parms.nb_antennas_rx),"");
      // we have the decoded frame index in the return of the synch process
      // and we shifted above to the first slot of next frame
      decoded_frame_rx++;
      // we do ++ first in the regular processing, so it will be begin of frame;
      absolute_slot = decoded_frame_rx * nb_slot_frame - 1;
      continue;
    }


    absolute_slot++;

    int slot_nr = absolute_slot % nb_slot_frame;
    nr_rxtx_thread_data_t curMsg = {0};
    curMsg.UE=UE;
    // update thread index for received subframe
    curMsg.proc.nr_slot_rx  = slot_nr;
    curMsg.proc.nr_slot_tx  = (absolute_slot + DURATION_RX_TO_TX) % nb_slot_frame;
    curMsg.proc.frame_rx    = (absolute_slot / nb_slot_frame) % MAX_FRAME_NUMBER;
    curMsg.proc.frame_tx    = ((absolute_slot + DURATION_RX_TO_TX) / nb_slot_frame) % MAX_FRAME_NUMBER;
    if (mac->phy_config_request_sent) {
      curMsg.proc.rx_slot_type = nr_ue_slot_select(cfg, curMsg.proc.nr_slot_rx);
      curMsg.proc.tx_slot_type = nr_ue_slot_select(cfg, curMsg.proc.nr_slot_tx);
    }
    else {
      curMsg.proc.rx_slot_type = NR_DOWNLINK_SLOT;
      curMsg.proc.tx_slot_type = NR_DOWNLINK_SLOT;
    }

    int firstSymSamp = get_firstSymSamp(slot_nr, &UE->frame_parms);
    for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++)
      rxp[i] = (void *)&UE->common_vars.rxdata[i][firstSymSamp+
               UE->frame_parms.get_samples_slot_timestamp(slot_nr,&UE->frame_parms,0)];

    int readBlockSize, writeBlockSize;

    readBlockSize = get_readBlockSize(slot_nr, &UE->frame_parms);
    writeBlockSize = UE->frame_parms.get_samples_per_slot((slot_nr + DURATION_RX_TO_TX) % nb_slot_frame, &UE->frame_parms);
    if (UE->apply_timing_offset && (slot_nr == nb_slot_frame - 1)) {
      const int sampShift = -(UE->rx_offset>>1);
      readBlockSize -= sampShift;
      writeBlockSize -= sampShift;
      UE->apply_timing_offset = false;
    }

    AssertFatal(readBlockSize ==
                UE->rfdevice.trx_read_func(&UE->rfdevice,
                                           &timestamp,
                                           rxp,
                                           readBlockSize,
                                           UE->frame_parms.nb_antennas_rx),"");

    if(slot_nr == (nb_slot_frame - 1)) {
      // read in first symbol of next frame and adjust for timing drift
      int first_symbols = UE->frame_parms.ofdm_symbol_size + UE->frame_parms.nb_prefix_samples0; // first symbol of every frames

      if (first_symbols > 0) {
        openair0_timestamp ignore_timestamp;
        AssertFatal(first_symbols ==
                    UE->rfdevice.trx_read_func(&UE->rfdevice,
                                               &ignore_timestamp,
                                               (void **)UE->common_vars.rxdata,
                                               first_symbols,
                                               UE->frame_parms.nb_antennas_rx),"");
      } else
        LOG_E(PHY,"can't compensate: diff =%d\n", first_symbols);
    }

    // use previous timing_advance value to compute writeTimestamp
    writeTimestamp = timestamp +
      UE->frame_parms.get_samples_slot_timestamp(slot_nr,&UE->frame_parms,DURATION_RX_TO_TX)
      - firstSymSamp - openair0_cfg[0].tx_sample_advance -
      UE->N_TA_offset - timing_advance;

    // but use current UE->timing_advance value to compute writeBlockSize
    if (UE->timing_advance != timing_advance) {
      writeBlockSize -= UE->timing_advance - timing_advance;
      timing_advance = UE->timing_advance;
    }

    if (curMsg.proc.nr_slot_tx == 0)
      nr_ue_rrc_timer_trigger(UE->Mod_id, curMsg.proc.frame_tx, curMsg.proc.gNB_id);

    // Start TX slot processing here. It runs in parallel with RX slot processing
    notifiedFIFO_elt_t *newElt = newNotifiedFIFO_elt(sizeof(nr_rxtx_thread_data_t), curMsg.proc.nr_slot_tx, &txFifo, processSlotTX);
    nr_rxtx_thread_data_t *curMsgTx = (nr_rxtx_thread_data_t *) NotifiedFifoData(newElt);
    curMsgTx->proc = curMsg.proc;
    curMsgTx->writeBlockSize = writeBlockSize;
    curMsgTx->proc.timestamp_tx = writeTimestamp;
    curMsgTx->UE = UE;
    curMsgTx->tx_wait_for_dlsch = UE->tx_wait_for_dlsch[curMsgTx->proc.nr_slot_tx];
    UE->tx_wait_for_dlsch[curMsgTx->proc.nr_slot_tx] = 0;
    pushTpool(&(get_nrUE_params()->Tpool), newElt);

    // RX slot processing. We launch and forget.
    newElt = newNotifiedFIFO_elt(sizeof(nr_rxtx_thread_data_t), curMsg.proc.nr_slot_rx, NULL, UE_dl_processing);
    nr_rxtx_thread_data_t *curMsgRx = (nr_rxtx_thread_data_t *) NotifiedFifoData(newElt);
    curMsgRx->proc = curMsg.proc;
    curMsgRx->UE = UE;
    curMsgRx->phy_data = UE_dl_preprocessing(UE, &curMsg.proc);
    pushTpool(&(get_nrUE_params()->Tpool), newElt);

    // Wait for TX slot processing to finish
    notifiedFIFO_elt_t *res;
    res = pullTpool(&txFifo, &(get_nrUE_params()->Tpool));
    if (res == NULL)
      LOG_E(PHY, "Tpool has been aborted\n");
    else
      delNotifiedFIFO_elt(res);
  } // while !oai_exit

  return NULL;
}

void init_NR_UE(int nb_inst, char *uecap_file, char *reconfig_file, char *rbconfig_file)
{
  int inst;
  NR_UE_MAC_INST_t *mac_inst;
  NR_UE_RRC_INST_t* rrc_inst;
  
  for (inst=0; inst < nb_inst; inst++) {
    AssertFatal((rrc_inst = nr_l3_init_ue(uecap_file, reconfig_file, rbconfig_file)) != NULL, "can not initialize RRC module\n");
    AssertFatal((mac_inst = nr_l2_init_ue(rrc_inst)) != NULL, "can not initialize L2 module\n");
    AssertFatal((mac_inst->if_module = nr_ue_if_module_init(inst)) != NULL, "can not initialize IF module\n");
  }
}

void init_NR_UE_threads(int nb_inst) {
  int inst;

  pthread_t threads[nb_inst];

  for (inst=0; inst < nb_inst; inst++) {
    PHY_VARS_NR_UE *UE = PHY_vars_UE_g[inst][0];

    LOG_I(PHY,"Intializing UE Threads for instance %d (%p,%p)...\n",inst,PHY_vars_UE_g[inst],PHY_vars_UE_g[inst][0]);
    threadCreate(&threads[inst], UE_thread, (void *)UE, "UEthread", -1, OAI_PRIORITY_RT_MAX);
    if (!IS_SOFTMODEM_NOSTATS_BIT) {
      pthread_t stat_pthread;
      threadCreate(&stat_pthread, nrL1_UE_stats_thread, UE, "L1_UE_stats", -1, OAI_PRIORITY_RT_LOW);
    }
  }
}