Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.0 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
#define _GNU_SOURCE // For pthread_setname_np
#include <pthread.h>
#include <openair1/PHY/impl_defs_top.h>
#include "executables/nr-uesoftmodem.h"
#include "PHY/phy_extern_nr_ue.h"
#include "PHY/INIT/nr_phy_init.h"
#include "NR_MAC_UE/mac_proto.h"
#include "RRC/NR_UE/rrc_proto.h"
#include "SCHED_NR_UE/phy_frame_config_nr.h"
#include "SCHED_NR_UE/defs.h"
#include "PHY/NR_UE_TRANSPORT/nr_transport_proto_ue.h"
#include "executables/softmodem-common.h"
#include "PHY/NR_REFSIG/refsig_defs_ue.h"
#include "radio/COMMON/common_lib.h"
#include "LAYER2/nr_pdcp/nr_pdcp_oai_api.h"
/*
* NR SLOT PROCESSING SEQUENCE
*
* Processing occurs with following steps for connected mode:
*
* - Rx samples for a slot are received,
* - PDCCH processing (including DCI extraction for downlink and uplink),
* - PDSCH processing (including transport blocks decoding),
* - PUCCH/PUSCH (transmission of acknowledgements, CSI, ... or data).
*
* Time between reception of the slot and related transmission depends on UE processing performance.
* It is defined by the value NR_UE_CAPABILITY_SLOT_RX_TO_TX.
*
* In NR, network gives the duration between Rx slot and Tx slot in the DCI:
* - for reception of a PDSCH and its associated acknowledgment slot (with a PUCCH or a PUSCH),
* - for reception of an uplink grant and its associated PUSCH slot.
*
* So duration between reception and it associated transmission depends on its transmission slot given in the DCI.
* NR_UE_CAPABILITY_SLOT_RX_TO_TX means the minimum duration but higher duration can be given by the network because UE can support it.
*
* Slot k
* -------+------------+--------
* Frame | Tx samples |
* Subframe | buffer |
* Slot n -------+------------+--------
* ------ +------------+-------- |
* | Rx samples | |
* | buffer | |
* -------+------------+-------- |
* | |
* V |
* +------------+ |
* | PDCCH | |
* | processing | |
* +------------+ |
* | | |
* | v |
* | +------------+ |
* | | PDSCH | |
* | | processing | decoding result |
* | +------------+ -> ACK/NACK of PDSCH |
* | | |
* | v |
* | +-------------+------------+ |
* | | PUCCH/PUSCH | Tx samples | |
* | | processing | transfer | |
* | +-------------+------------+ |
* | |
* |/___________________________________________________________\|
* \ duration between reception and associated transmission /
*
* Remark: processing is done slot by slot, it can be distribute on different threads which are executed in parallel.
* This is an architecture optimization in order to cope with real time constraints.
* By example, for LTE, subframe processing is spread over 4 different threads.
*
*/
#define RX_JOB_ID 0x1010
#define TX_JOB_ID 100
typedef enum {
pss = 0,
pbch = 1,
si = 2
} sync_mode_t;
static void *NRUE_phy_stub_standalone_pnf_task(void *arg);
static size_t dump_L1_UE_meas_stats(PHY_VARS_NR_UE *ue, char *output, size_t max_len)
{
const char *begin = output;
const char *end = output + max_len;
output += print_meas_log(&ue->phy_proc_tx, "L1 TX processing", NULL, NULL, output, end - output);
output += print_meas_log(&ue->ulsch_encoding_stats, "ULSCH encoding", NULL, NULL, output, end - output);
output += print_meas_log(&ue->phy_proc_rx, "L1 RX processing", NULL, NULL, output, end - output);
output += print_meas_log(&ue->ue_ul_indication_stats, "UL Indication", NULL, NULL, output, end - output);
output += print_meas_log(&ue->rx_pdsch_stats, "PDSCH receiver", NULL, NULL, output, end - output);
output += print_meas_log(&ue->dlsch_decoding_stats, "PDSCH decoding", NULL, NULL, output, end - output);
output += print_meas_log(&ue->dlsch_deinterleaving_stats, " -> Deinterleive", NULL, NULL, output, end - output);
output += print_meas_log(&ue->dlsch_rate_unmatching_stats, " -> Rate Unmatch", NULL, NULL, output, end - output);
output += print_meas_log(&ue->dlsch_ldpc_decoding_stats, " -> LDPC Decode", NULL, NULL, output, end - output);
output += print_meas_log(&ue->dlsch_unscrambling_stats, "PDSCH unscrambling", NULL, NULL, output, end - output);
output += print_meas_log(&ue->dlsch_rx_pdcch_stats, "PDCCH handling", NULL, NULL, output, end - output);
return output - begin;
}
static void *nrL1_UE_stats_thread(void *param)
{
PHY_VARS_NR_UE *ue = (PHY_VARS_NR_UE *) param;
const int max_len = 16384;
char output[max_len];
char filename[30];
snprintf(filename, 29, "nrL1_UE_stats-%d.log", ue->Mod_id);
filename[29] = 0;
FILE *fd = fopen(filename, "w");
AssertFatal(fd != NULL, "Cannot open %s\n", filename);
while (!oai_exit) {
sleep(1);
const int len = dump_L1_UE_meas_stats(ue, output, max_len);
AssertFatal(len < max_len, "exceeded length\n");
fwrite(output, len + 1, 1, fd); // + 1 for terminating NULL byte
fflush(fd);
fseek(fd, 0, SEEK_SET);
}
fclose(fd);
return NULL;
}
void init_nr_ue_vars(PHY_VARS_NR_UE *ue,
uint8_t UE_id,
uint8_t abstraction_flag)
{
int nb_connected_gNB = 1;
ue->Mod_id = UE_id;
ue->if_inst = nr_ue_if_module_init(0);
ue->dci_thres = 0;
ue->target_Nid_cell = -1;
// initialize all signal buffers
init_nr_ue_signal(ue, nb_connected_gNB);
// intialize transport
init_nr_ue_transport(ue);
// init N_TA offset
init_N_TA_offset(ue);
}
void init_nrUE_standalone_thread(int ue_idx)
{
int standalone_tx_port = 3611 + ue_idx * 2;
int standalone_rx_port = 3612 + ue_idx * 2;
nrue_init_standalone_socket(standalone_tx_port, standalone_rx_port);
NR_UE_MAC_INST_t *mac = get_mac_inst(0);
pthread_mutex_init(&mac->mutex_dl_info, NULL);
pthread_t thread;
if (pthread_create(&thread, NULL, nrue_standalone_pnf_task, NULL) != 0) {
LOG_E(NR_MAC, "pthread_create failed for calling nrue_standalone_pnf_task");
}
pthread_setname_np(thread, "oai:nrue-stand");
pthread_t phy_thread;
if (pthread_create(&phy_thread, NULL, NRUE_phy_stub_standalone_pnf_task, NULL) != 0) {
LOG_E(NR_MAC, "pthread_create failed for calling NRUE_phy_stub_standalone_pnf_task");
}
pthread_setname_np(phy_thread, "oai:nrue-stand-phy");
}
static void process_queued_nr_nfapi_msgs(NR_UE_MAC_INST_t *mac, int sfn_slot)
{
nfapi_nr_rach_indication_t *rach_ind = unqueue_matching(&nr_rach_ind_queue, MAX_QUEUE_SIZE, sfn_slot_matcher, &sfn_slot);
nfapi_nr_dl_tti_request_t *dl_tti_request = get_queue(&nr_dl_tti_req_queue);
nfapi_nr_ul_dci_request_t *ul_dci_request = get_queue(&nr_ul_dci_req_queue);
for (int i = 0; i < NR_MAX_HARQ_PROCESSES; i++) {
LOG_D(NR_MAC, "Try to get a ul_tti_req by matching CRC active SFN %d/SLOT %d from queue with %lu items\n",
NFAPI_SFNSLOT2SFN(mac->nr_ue_emul_l1.harq[i].active_ul_harq_sfn_slot),
NFAPI_SFNSLOT2SLOT(mac->nr_ue_emul_l1.harq[i].active_ul_harq_sfn_slot), nr_ul_tti_req_queue.num_items);
nfapi_nr_ul_tti_request_t *ul_tti_request_crc = unqueue_matching(&nr_ul_tti_req_queue, MAX_QUEUE_SIZE, sfn_slot_matcher, &mac->nr_ue_emul_l1.harq[i].active_ul_harq_sfn_slot);
if (ul_tti_request_crc && ul_tti_request_crc->n_pdus > 0) {
check_and_process_dci(NULL, NULL, NULL, ul_tti_request_crc);
free_and_zero(ul_tti_request_crc);
}
}
if (rach_ind && rach_ind->number_of_pdus > 0) {
NR_UL_IND_t UL_INFO = {
.rach_ind = *rach_ind,
};
send_nsa_standalone_msg(&UL_INFO, rach_ind->header.message_id);
for (int i = 0; i < rach_ind->number_of_pdus; i++)
{
free_and_zero(rach_ind->pdu_list[i].preamble_list);
}
free_and_zero(rach_ind->pdu_list);
free_and_zero(rach_ind);
}
if (dl_tti_request) {
int dl_tti_sfn_slot = NFAPI_SFNSLOT2HEX(dl_tti_request->SFN, dl_tti_request->Slot);
nfapi_nr_tx_data_request_t *tx_data_request = unqueue_matching(&nr_tx_req_queue, MAX_QUEUE_SIZE, sfn_slot_matcher, &dl_tti_sfn_slot);
if (!tx_data_request) {
LOG_E(NR_MAC, "[%d %d] No corresponding tx_data_request for given dl_tti_request sfn/slot\n",
NFAPI_SFNSLOT2SFN(dl_tti_sfn_slot), NFAPI_SFNSLOT2SLOT(dl_tti_sfn_slot));
if (get_softmodem_params()->nsa)
save_nr_measurement_info(dl_tti_request);
free_and_zero(dl_tti_request);
}
else if (dl_tti_request->dl_tti_request_body.nPDUs > 0 && tx_data_request->Number_of_PDUs > 0) {
if (get_softmodem_params()->nsa)
save_nr_measurement_info(dl_tti_request);
check_and_process_dci(dl_tti_request, tx_data_request, NULL, NULL);
free_and_zero(dl_tti_request);
free_and_zero(tx_data_request);
}
else {
AssertFatal(false, "We dont have PDUs in either dl_tti %d or tx_req %d\n",
dl_tti_request->dl_tti_request_body.nPDUs, tx_data_request->Number_of_PDUs);
}
}
if (ul_dci_request && ul_dci_request->numPdus > 0) {
check_and_process_dci(NULL, NULL, ul_dci_request, NULL);
free_and_zero(ul_dci_request);
}
}
static void *NRUE_phy_stub_standalone_pnf_task(void *arg)
{
LOG_I(MAC, "Clearing Queues\n");
reset_queue(&nr_rach_ind_queue);
reset_queue(&nr_rx_ind_queue);
reset_queue(&nr_crc_ind_queue);
reset_queue(&nr_uci_ind_queue);
reset_queue(&nr_dl_tti_req_queue);
reset_queue(&nr_tx_req_queue);
reset_queue(&nr_ul_dci_req_queue);
reset_queue(&nr_ul_tti_req_queue);
int last_sfn_slot = -1;
uint16_t sfn_slot = 0;
module_id_t mod_id = 0;
NR_UE_MAC_INST_t *mac = get_mac_inst(mod_id);
for (int i = 0; i < NR_MAX_HARQ_PROCESSES; i++) {
mac->nr_ue_emul_l1.harq[i].active = false;
mac->nr_ue_emul_l1.harq[i].active_ul_harq_sfn_slot = -1;
}
while (!oai_exit) {
if (sem_wait(&sfn_slot_semaphore) != 0) {
LOG_E(NR_MAC, "sem_wait() error\n");
abort();
}
uint16_t *slot_ind = get_queue(&nr_sfn_slot_queue);
nr_phy_channel_params_t *ch_info = get_queue(&nr_chan_param_queue);
if (!slot_ind && !ch_info) {
LOG_D(MAC, "get nr_sfn_slot_queue and nr_chan_param_queue == NULL!\n");
continue;
}
if (slot_ind) {
sfn_slot = *slot_ind;
free_and_zero(slot_ind);
}
else if (ch_info) {
sfn_slot = ch_info->sfn_slot;
free_and_zero(ch_info);
}
frame_t frame = NFAPI_SFNSLOT2SFN(sfn_slot);
int slot = NFAPI_SFNSLOT2SLOT(sfn_slot);
if (sfn_slot == last_sfn_slot) {
LOG_D(NR_MAC, "repeated sfn_sf = %d.%d\n",
frame, slot);
continue;
}
last_sfn_slot = sfn_slot;
LOG_D(NR_MAC, "The received sfn/slot [%d %d] from proxy\n",
frame, slot);
if (get_softmodem_params()->sa && mac->mib == NULL) {
LOG_D(NR_MAC, "We haven't gotten MIB. Lets see if we received it\n");
nr_ue_dl_indication(&mac->dl_info);
process_queued_nr_nfapi_msgs(mac, sfn_slot);
}
int CC_id = 0;
uint8_t gNB_id = 0;
nr_uplink_indication_t ul_info;
int slots_per_frame = 20; //30 kHZ subcarrier spacing
int slot_ahead = 2; // TODO: Make this dynamic
ul_info.cc_id = CC_id;
ul_info.gNB_index = gNB_id;
ul_info.module_id = mod_id;
ul_info.frame_rx = frame;
ul_info.slot_rx = slot;
ul_info.slot_tx = (slot + slot_ahead) % slots_per_frame;
ul_info.frame_tx = (ul_info.slot_rx + slot_ahead >= slots_per_frame) ? ul_info.frame_rx + 1 : ul_info.frame_rx;
if (pthread_mutex_lock(&mac->mutex_dl_info)) abort();
if (ch_info) {
mac->nr_ue_emul_l1.pmi = ch_info->csi[0].pmi;
mac->nr_ue_emul_l1.ri = ch_info->csi[0].ri;
mac->nr_ue_emul_l1.cqi = ch_info->csi[0].cqi;
free_and_zero(ch_info);
}
if (is_nr_DL_slot(mac->tdd_UL_DL_ConfigurationCommon,
ul_info.slot_rx)) {
memset(&mac->dl_info, 0, sizeof(mac->dl_info));
mac->dl_info.cc_id = CC_id;
mac->dl_info.gNB_index = gNB_id;
mac->dl_info.module_id = mod_id;
mac->dl_info.frame = frame;
mac->dl_info.slot = slot;
mac->dl_info.dci_ind = NULL;
mac->dl_info.rx_ind = NULL;
nr_ue_dl_indication(&mac->dl_info);
}
if (pthread_mutex_unlock(&mac->mutex_dl_info)) abort();
if (is_nr_UL_slot(mac->tdd_UL_DL_ConfigurationCommon,
ul_info.slot_tx, mac->frame_type)) {
LOG_D(NR_MAC, "Slot %d. calling nr_ue_ul_ind()\n", ul_info.slot_tx);
nr_ue_ul_scheduler(&ul_info);
}
process_queued_nr_nfapi_msgs(mac, sfn_slot);
}
return NULL;
}
/*!
* It performs band scanning and synchonization.
* \param arg is a pointer to a \ref PHY_VARS_NR_UE structure.
*/
typedef nr_rxtx_thread_data_t syncData_t;
static void UE_synch(void *arg) {
syncData_t *syncD=(syncData_t *) arg;
int i, hw_slot_offset;
PHY_VARS_NR_UE *UE = syncD->UE;
sync_mode_t sync_mode = pbch;
//int CC_id = UE->CC_id;
static int freq_offset=0;
UE->is_synchronized = 0;
if (UE->UE_scan == 0) {
for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
LOG_I( PHY, "[SCHED][UE] Check absolute frequency DL %f, UL %f (RF card %d, oai_exit %d, channel %d, rx_num_channels %d)\n",
openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i],
openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i],
UE->rf_map.card,
oai_exit,
i,
openair0_cfg[0].rx_num_channels);
}
sync_mode = pbch;
} else {
LOG_E(PHY,"Fixme!\n");
/*
for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
downlink_frequency[UE->rf_map.card][UE->rf_map.chain+i] = bands_to_scan.band_info[CC_id].dl_min;
uplink_frequency_offset[UE->rf_map.card][UE->rf_map.chain+i] =
bands_to_scan.band_info[CC_id].ul_min-bands_to_scan.band_info[CC_id].dl_min;
openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i];
openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] =
downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i];
openair0_cfg[UE->rf_map.card].rx_gain[UE->rf_map.chain+i] = UE->rx_total_gain_dB;
}
*/
}
if (UE->target_Nid_cell != -1) {
LOG_W(NR_PHY, "Starting re-sync detection for target Nid_cell %i\n", UE->target_Nid_cell);
} else {
LOG_W(NR_PHY, "Starting sync detection\n");
}
switch (sync_mode) {
/*
case pss:
LOG_I(PHY,"[SCHED][UE] Scanning band %d (%d), freq %u\n",bands_to_scan.band_info[current_band].band, current_band,bands_to_scan.band_info[current_band].dl_min+current_offset);
//lte_sync_timefreq(UE,current_band,bands_to_scan.band_info[current_band].dl_min+current_offset);
current_offset += 20000000; // increase by 20 MHz
if (current_offset > bands_to_scan.band_info[current_band].dl_max-bands_to_scan.band_info[current_band].dl_min) {
current_band++;
current_offset=0;
}
if (current_band==bands_to_scan.nbands) {
current_band=0;
oai_exit=1;
}
for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
downlink_frequency[UE->rf_map.card][UE->rf_map.chain+i] = bands_to_scan.band_info[current_band].dl_min+current_offset;
uplink_frequency_offset[UE->rf_map.card][UE->rf_map.chain+i] = bands_to_scan.band_info[current_band].ul_min-bands_to_scan.band_info[0].dl_min + current_offset;
openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i];
openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i];
openair0_cfg[UE->rf_map.card].rx_gain[UE->rf_map.chain+i] = UE->rx_total_gain_dB;
if (UE->UE_scan_carrier) {
openair0_cfg[UE->rf_map.card].autocal[UE->rf_map.chain+i] = 1;
}
}
break;
*/
case pbch:
LOG_I(PHY, "[UE thread Synch] Running Initial Synch \n");
uint64_t dl_carrier, ul_carrier;
nr_get_carrier_frequencies(UE, &dl_carrier, &ul_carrier);
if (nr_initial_sync(&syncD->proc, UE, 2, get_softmodem_params()->sa) == 0) {
freq_offset = UE->common_vars.freq_offset; // frequency offset computed with pss in initial sync
hw_slot_offset = ((UE->rx_offset<<1) / UE->frame_parms.samples_per_subframe * UE->frame_parms.slots_per_subframe) +
round((float)((UE->rx_offset<<1) % UE->frame_parms.samples_per_subframe)/UE->frame_parms.samples_per_slot0);
// rerun with new cell parameters and frequency-offset
// todo: the freq_offset computed on DL shall be scaled before being applied to UL
nr_rf_card_config_freq(&openair0_cfg[UE->rf_map.card], ul_carrier, dl_carrier, freq_offset);
LOG_I(PHY,"Got synch: hw_slot_offset %d, carrier off %d Hz, rxgain %f (DL %f Hz, UL %f Hz)\n",
hw_slot_offset,
freq_offset,
openair0_cfg[UE->rf_map.card].rx_gain[0],
openair0_cfg[UE->rf_map.card].rx_freq[0],
openair0_cfg[UE->rf_map.card].tx_freq[0]);
UE->rfdevice.trx_set_freq_func(&UE->rfdevice,&openair0_cfg[0]);
if (UE->UE_scan_carrier == 1) {
UE->UE_scan_carrier = 0;
} else {
UE->is_synchronized = 1;
}
if (UE->synch_request.received_synch_request == 1) {
UE->is_synchronized = 0;
UE->synch_request.received_synch_request = 0;
}
} else {
if (UE->UE_scan_carrier == 1) {
if (freq_offset >= 0)
freq_offset += 100;
freq_offset *= -1;
nr_rf_card_config_freq(&openair0_cfg[UE->rf_map.card], ul_carrier, dl_carrier, freq_offset);
LOG_I(PHY, "Initial sync failed: trying carrier off %d Hz\n", freq_offset);
UE->rfdevice.trx_set_freq_func(&UE->rfdevice,&openair0_cfg[0]);
}
}
break;
case si:
default:
break;
}
}
static void RU_write(nr_rxtx_thread_data_t *rxtxD) {
PHY_VARS_NR_UE *UE = rxtxD->UE;
UE_nr_rxtx_proc_t *proc = &rxtxD->proc;
void *txp[NB_ANTENNAS_TX];
int slot = proc->nr_slot_tx;
for (int i = 0; i < UE->frame_parms.nb_antennas_tx; i++)
txp[i] = (void *)&UE->common_vars.txData[i][UE->frame_parms.get_samples_slot_timestamp(slot, &UE->frame_parms, 0)];
radio_tx_burst_flag_t flags = TX_BURST_INVALID;
NR_UE_MAC_INST_t *mac = get_mac_inst(0);
if (mac->phy_config_request_sent &&
openair0_cfg[0].duplex_mode == duplex_mode_TDD &&
!get_softmodem_params()->continuous_tx) {
int slots_frame = UE->frame_parms.slots_per_frame;
int curr_slot = nr_ue_slot_select(&UE->nrUE_config, slot);
if (curr_slot != NR_DOWNLINK_SLOT) {
int next_slot = nr_ue_slot_select(&UE->nrUE_config, (slot + 1) % slots_frame);
int prev_slot = nr_ue_slot_select(&UE->nrUE_config, (slot + slots_frame - 1) % slots_frame);
if (prev_slot == NR_DOWNLINK_SLOT)
flags = TX_BURST_START;
else if (next_slot == NR_DOWNLINK_SLOT)
flags = TX_BURST_END;
else
flags = TX_BURST_MIDDLE;
}
} else {
flags = TX_BURST_MIDDLE;
}
if (flags || IS_SOFTMODEM_RFSIM)
AssertFatal(rxtxD->writeBlockSize ==
UE->rfdevice.trx_write_func(&UE->rfdevice,
proc->timestamp_tx,
txp,
rxtxD->writeBlockSize,
UE->frame_parms.nb_antennas_tx,
flags),"");
for (int i=0; i<UE->frame_parms.nb_antennas_tx; i++)
memset(txp[i], 0, rxtxD->writeBlockSize);
}
void processSlotTX(void *arg) {
nr_rxtx_thread_data_t *rxtxD = (nr_rxtx_thread_data_t *) arg;
UE_nr_rxtx_proc_t *proc = &rxtxD->proc;
PHY_VARS_NR_UE *UE = rxtxD->UE;
nr_phy_data_tx_t phy_data = {0};
LOG_D(PHY,"%d.%d => slot type %d\n", proc->frame_tx, proc->nr_slot_tx, proc->tx_slot_type);
if (proc->tx_slot_type == NR_UPLINK_SLOT || proc->tx_slot_type == NR_MIXED_SLOT){
// wait for rx slots to send indication (if any) that DLSCH decoding is finished
for(int i=0; i < rxtxD->tx_wait_for_dlsch; i++) {
notifiedFIFO_elt_t *res = pullNotifiedFIFO(UE->tx_resume_ind_fifo[proc->nr_slot_tx]);
delNotifiedFIFO_elt(res);
}
// trigger L2 to run ue_scheduler thru IF module
// [TODO] mapping right after NR initial sync
if(UE->if_inst != NULL && UE->if_inst->ul_indication != NULL) {
start_meas(&UE->ue_ul_indication_stats);
nr_uplink_indication_t ul_indication;
memset((void*)&ul_indication, 0, sizeof(ul_indication));
ul_indication.module_id = UE->Mod_id;
ul_indication.gNB_index = proc->gNB_id;
ul_indication.cc_id = UE->CC_id;
ul_indication.frame_rx = proc->frame_rx;
ul_indication.slot_rx = proc->nr_slot_rx;
ul_indication.frame_tx = proc->frame_tx;
ul_indication.slot_tx = proc->nr_slot_tx;
ul_indication.phy_data = &phy_data;
UE->if_inst->ul_indication(&ul_indication);
stop_meas(&UE->ue_ul_indication_stats);
}
phy_procedures_nrUE_TX(UE, proc, &phy_data);
}
RU_write(rxtxD);
}
nr_phy_data_t UE_dl_preprocessing(PHY_VARS_NR_UE *UE, UE_nr_rxtx_proc_t *proc)
{
nr_phy_data_t phy_data = {0};
if (IS_SOFTMODEM_NOS1 || get_softmodem_params()->sa) {
// Start synchronization with a target gNB
if (UE->synch_request.received_synch_request == 1 && UE->target_Nid_cell == -1) {
UE->is_synchronized = 0;
UE->target_Nid_cell = UE->synch_request.synch_req.target_Nid_cell;
clean_UE_ulsch(UE, proc->gNB_id);
} else if (UE->synch_request.received_synch_request == 1 && UE->target_Nid_cell != -1) {
UE->synch_request.received_synch_request = 0;
UE->target_Nid_cell = -1;
}
/* send tick to RLC and PDCP every ms */
if (proc->nr_slot_rx % UE->frame_parms.slots_per_subframe == 0) {
void nr_rlc_tick(int frame, int subframe);
void nr_pdcp_tick(int frame, int subframe);
nr_rlc_tick(proc->frame_rx, proc->nr_slot_rx / UE->frame_parms.slots_per_subframe);
nr_pdcp_tick(proc->frame_rx, proc->nr_slot_rx / UE->frame_parms.slots_per_subframe);
}
}
if (proc->rx_slot_type == NR_DOWNLINK_SLOT || proc->rx_slot_type == NR_MIXED_SLOT) {
if(UE->if_inst != NULL && UE->if_inst->dl_indication != NULL) {
nr_downlink_indication_t dl_indication;
nr_fill_dl_indication(&dl_indication, NULL, NULL, proc, UE, &phy_data);
UE->if_inst->dl_indication(&dl_indication);
}
uint64_t a=rdtsc_oai();
pbch_pdcch_processing(UE, proc, &phy_data);
if (phy_data.dlsch[0].active) {
// indicate to tx thread to wait for DLSCH decoding
const int ack_nack_slot = (proc->nr_slot_rx + phy_data.dlsch[0].dlsch_config.k1_feedback) % UE->frame_parms.slots_per_frame;
UE->tx_wait_for_dlsch[ack_nack_slot]++;
}
LOG_D(PHY, "In %s: slot %d, time %llu\n", __FUNCTION__, proc->nr_slot_rx, (rdtsc_oai()-a)/3500);
}
ue_ta_procedures(UE, proc->nr_slot_tx, proc->frame_tx);
return phy_data;
}
void UE_dl_processing(void *arg) {
nr_rxtx_thread_data_t *rxtxD = (nr_rxtx_thread_data_t *) arg;
UE_nr_rxtx_proc_t *proc = &rxtxD->proc;
PHY_VARS_NR_UE *UE = rxtxD->UE;
nr_phy_data_t *phy_data = &rxtxD->phy_data;
pdsch_processing(UE, proc, phy_data);
}
void dummyWrite(PHY_VARS_NR_UE *UE,openair0_timestamp timestamp, int writeBlockSize) {
void *dummy_tx[UE->frame_parms.nb_antennas_tx];
int16_t dummy_tx_data[UE->frame_parms.nb_antennas_tx][2*writeBlockSize]; // 2 because the function we call use pairs of int16_t implicitly as complex numbers
memset(dummy_tx_data, 0, sizeof(dummy_tx_data));
for (int i=0; i<UE->frame_parms.nb_antennas_tx; i++)
dummy_tx[i]=dummy_tx_data[i];
AssertFatal( writeBlockSize ==
UE->rfdevice.trx_write_func(&UE->rfdevice,
timestamp,
dummy_tx,
writeBlockSize,
UE->frame_parms.nb_antennas_tx,
4),"");
}
void readFrame(PHY_VARS_NR_UE *UE, openair0_timestamp *timestamp, bool toTrash) {
void *rxp[NB_ANTENNAS_RX];
for(int x=0; x<20; x++) { // two frames for initial sync
for (int slot=0; slot<UE->frame_parms.slots_per_subframe; slot ++ ) {
for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++) {
if (toTrash)
rxp[i]=malloc16(UE->frame_parms.get_samples_per_slot(slot,&UE->frame_parms)*4);
else
rxp[i] = ((void *)&UE->common_vars.rxdata[i][0]) +
4*((x*UE->frame_parms.samples_per_subframe)+
UE->frame_parms.get_samples_slot_timestamp(slot,&UE->frame_parms,0));
}
AssertFatal( UE->frame_parms.get_samples_per_slot(slot,&UE->frame_parms) ==
UE->rfdevice.trx_read_func(&UE->rfdevice,
timestamp,
rxp,
UE->frame_parms.get_samples_per_slot(slot,&UE->frame_parms),
UE->frame_parms.nb_antennas_rx), "");
if (IS_SOFTMODEM_RFSIM)
dummyWrite(UE,*timestamp, UE->frame_parms.get_samples_per_slot(slot,&UE->frame_parms));
if (toTrash)
for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++)
free(rxp[i]);
}
}
}
void syncInFrame(PHY_VARS_NR_UE *UE, openair0_timestamp *timestamp) {
LOG_I(PHY,"Resynchronizing RX by %d samples\n",UE->rx_offset);
if (IS_SOFTMODEM_IQPLAYER || IS_SOFTMODEM_IQRECORDER) {
// Resynchonize by slot (will work with numerology 1 only)
for ( int size=UE->rx_offset ; size > 0 ; size -= UE->frame_parms.samples_per_subframe/2 ) {
int unitTransfer=size>UE->frame_parms.samples_per_subframe/2 ? UE->frame_parms.samples_per_subframe/2 : size ;
AssertFatal(unitTransfer ==
UE->rfdevice.trx_read_func(&UE->rfdevice,
timestamp,
(void **)UE->common_vars.rxdata,
unitTransfer,
UE->frame_parms.nb_antennas_rx),"");
}
} else {
*timestamp += UE->frame_parms.get_samples_per_slot(1,&UE->frame_parms);
for ( int size=UE->rx_offset ; size > 0 ; size -= UE->frame_parms.samples_per_subframe ) {
int unitTransfer=size>UE->frame_parms.samples_per_subframe ? UE->frame_parms.samples_per_subframe : size ;
// we write before read because gNB waits for UE to write and both executions halt
// this happens here as the read size is samples_per_subframe which is very much larger than samp_per_slot
if (IS_SOFTMODEM_RFSIM) dummyWrite(UE,*timestamp, unitTransfer);
AssertFatal(unitTransfer ==
UE->rfdevice.trx_read_func(&UE->rfdevice,
timestamp,
(void **)UE->common_vars.rxdata,
unitTransfer,
UE->frame_parms.nb_antennas_rx),"");
*timestamp += unitTransfer; // this does not affect the read but needed for RFSIM write
}
}
}
static inline int get_firstSymSamp(uint16_t slot, NR_DL_FRAME_PARMS *fp) {
if (fp->numerology_index == 0)
return fp->nb_prefix_samples0 + fp->ofdm_symbol_size;
int num_samples = (slot%(fp->slots_per_subframe/2)) ? fp->nb_prefix_samples : fp->nb_prefix_samples0;
num_samples += fp->ofdm_symbol_size;
return num_samples;
}
static inline int get_readBlockSize(uint16_t slot, NR_DL_FRAME_PARMS *fp) {
int rem_samples = fp->get_samples_per_slot(slot, fp) - get_firstSymSamp(slot, fp);
int next_slot_first_symbol = 0;
if (slot < (fp->slots_per_frame-1))
next_slot_first_symbol = get_firstSymSamp(slot+1, fp);
return rem_samples + next_slot_first_symbol;
}
void *UE_thread(void *arg)
{
//this thread should be over the processing thread to keep in real time
PHY_VARS_NR_UE *UE = (PHY_VARS_NR_UE *) arg;
// int tx_enabled = 0;
openair0_timestamp timestamp, writeTimestamp;
void *rxp[NB_ANTENNAS_RX];
int start_rx_stream = 0;
fapi_nr_config_request_t *cfg = &UE->nrUE_config;
AssertFatal(0== openair0_device_load(&(UE->rfdevice), &openair0_cfg[0]), "");
UE->rfdevice.host_type = RAU_HOST;
UE->is_synchronized = 0;
AssertFatal(UE->rfdevice.trx_start_func(&UE->rfdevice) == 0, "Could not start the device\n");
notifiedFIFO_t nf;
initNotifiedFIFO(&nf);
notifiedFIFO_t txFifo;
initNotifiedFIFO(&txFifo);
notifiedFIFO_t freeBlocks;
initNotifiedFIFO_nothreadSafe(&freeBlocks);
int timing_advance = UE->timing_advance;
NR_UE_MAC_INST_t *mac = get_mac_inst(0);
bool syncRunning=false;
const int nb_slot_frame = UE->frame_parms.slots_per_frame;
int absolute_slot=0, decoded_frame_rx=INT_MAX, trashed_frames=0;
initNotifiedFIFO(&UE->phy_config_ind);
int num_ind_fifo = nb_slot_frame;
for(int i=0; i < num_ind_fifo; i++) {
UE->tx_wait_for_dlsch[num_ind_fifo] = 0;
UE->tx_resume_ind_fifo[i] = malloc(sizeof(*UE->tx_resume_ind_fifo[i]));
initNotifiedFIFO(UE->tx_resume_ind_fifo[i]);
}
while (!oai_exit) {
if (syncRunning) {
notifiedFIFO_elt_t *res=tryPullTpool(&nf,&(get_nrUE_params()->Tpool));
if (res) {
syncRunning=false;
if (UE->is_synchronized) {
decoded_frame_rx = mac->mib_frame;
LOG_I(PHY,"UE synchronized decoded_frame_rx=%d UE->init_sync_frame=%d trashed_frames=%d\n",
decoded_frame_rx,
UE->init_sync_frame,
trashed_frames);
// shift the frame index with all the frames we trashed meanwhile we perform the synch search
decoded_frame_rx = (decoded_frame_rx + UE->init_sync_frame + trashed_frames) % MAX_FRAME_NUMBER;
}
delNotifiedFIFO_elt(res);
start_rx_stream=0;
} else {
if (IS_SOFTMODEM_IQPLAYER || IS_SOFTMODEM_IQRECORDER) {
// For IQ recorder/player we force synchronization to happen in 280 ms
while (trashed_frames != 28) {
readFrame(UE, ×tamp, true);
trashed_frames+=2;
}
} else {
readFrame(UE, ×tamp, true);
trashed_frames+=2;
}
continue;
}
}
AssertFatal( !syncRunning, "At this point synchronization can't be running\n");
if (!UE->is_synchronized) {
readFrame(UE, ×tamp, false);
notifiedFIFO_elt_t *Msg = newNotifiedFIFO_elt(sizeof(syncData_t), 0, &nf, UE_synch);
syncData_t *syncMsg = (syncData_t *)NotifiedFifoData(Msg);
syncMsg->UE = UE;
memset(&syncMsg->proc, 0, sizeof(syncMsg->proc));
pushTpool(&(get_nrUE_params()->Tpool), Msg);
trashed_frames = 0;
syncRunning = true;
continue;
}
if (start_rx_stream == 0) {
start_rx_stream=1;
syncInFrame(UE, ×tamp);
UE->rx_offset=0;
UE->time_sync_cell=0;
// read in first symbol
AssertFatal (UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0 ==
UE->rfdevice.trx_read_func(&UE->rfdevice,
×tamp,
(void **)UE->common_vars.rxdata,
UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0,
UE->frame_parms.nb_antennas_rx),"");
// we have the decoded frame index in the return of the synch process
// and we shifted above to the first slot of next frame
decoded_frame_rx++;
// we do ++ first in the regular processing, so it will be begin of frame;
absolute_slot = decoded_frame_rx * nb_slot_frame - 1;
continue;
}
absolute_slot++;
int slot_nr = absolute_slot % nb_slot_frame;
nr_rxtx_thread_data_t curMsg = {0};
curMsg.UE=UE;
// update thread index for received subframe
curMsg.proc.nr_slot_rx = slot_nr;
curMsg.proc.nr_slot_tx = (absolute_slot + DURATION_RX_TO_TX) % nb_slot_frame;
curMsg.proc.frame_rx = (absolute_slot / nb_slot_frame) % MAX_FRAME_NUMBER;
curMsg.proc.frame_tx = ((absolute_slot + DURATION_RX_TO_TX) / nb_slot_frame) % MAX_FRAME_NUMBER;
if (mac->phy_config_request_sent) {
curMsg.proc.rx_slot_type = nr_ue_slot_select(cfg, curMsg.proc.nr_slot_rx);
curMsg.proc.tx_slot_type = nr_ue_slot_select(cfg, curMsg.proc.nr_slot_tx);
}
else {
curMsg.proc.rx_slot_type = NR_DOWNLINK_SLOT;
curMsg.proc.tx_slot_type = NR_DOWNLINK_SLOT;
}
int firstSymSamp = get_firstSymSamp(slot_nr, &UE->frame_parms);
for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++)
rxp[i] = (void *)&UE->common_vars.rxdata[i][firstSymSamp+
UE->frame_parms.get_samples_slot_timestamp(slot_nr,&UE->frame_parms,0)];
int readBlockSize, writeBlockSize;
readBlockSize = get_readBlockSize(slot_nr, &UE->frame_parms);
writeBlockSize = UE->frame_parms.get_samples_per_slot((slot_nr + DURATION_RX_TO_TX) % nb_slot_frame, &UE->frame_parms);
if (UE->apply_timing_offset && (slot_nr == nb_slot_frame - 1)) {
const int sampShift = -(UE->rx_offset>>1);
readBlockSize -= sampShift;
writeBlockSize -= sampShift;
UE->apply_timing_offset = false;
}
AssertFatal(readBlockSize ==
UE->rfdevice.trx_read_func(&UE->rfdevice,
×tamp,
rxp,
readBlockSize,
UE->frame_parms.nb_antennas_rx),"");
if(slot_nr == (nb_slot_frame - 1)) {
// read in first symbol of next frame and adjust for timing drift
int first_symbols = UE->frame_parms.ofdm_symbol_size + UE->frame_parms.nb_prefix_samples0; // first symbol of every frames
if (first_symbols > 0) {
openair0_timestamp ignore_timestamp;
AssertFatal(first_symbols ==
UE->rfdevice.trx_read_func(&UE->rfdevice,
&ignore_timestamp,
(void **)UE->common_vars.rxdata,
first_symbols,
UE->frame_parms.nb_antennas_rx),"");
} else
LOG_E(PHY,"can't compensate: diff =%d\n", first_symbols);
}
// use previous timing_advance value to compute writeTimestamp
writeTimestamp = timestamp +
UE->frame_parms.get_samples_slot_timestamp(slot_nr,&UE->frame_parms,DURATION_RX_TO_TX)
- firstSymSamp - openair0_cfg[0].tx_sample_advance -
UE->N_TA_offset - timing_advance;
// but use current UE->timing_advance value to compute writeBlockSize
if (UE->timing_advance != timing_advance) {
writeBlockSize -= UE->timing_advance - timing_advance;
timing_advance = UE->timing_advance;
}
if (curMsg.proc.nr_slot_tx == 0)
nr_ue_rrc_timer_trigger(UE->Mod_id, curMsg.proc.frame_tx, curMsg.proc.gNB_id);
// Start TX slot processing here. It runs in parallel with RX slot processing
notifiedFIFO_elt_t *newElt = newNotifiedFIFO_elt(sizeof(nr_rxtx_thread_data_t), curMsg.proc.nr_slot_tx, &txFifo, processSlotTX);
nr_rxtx_thread_data_t *curMsgTx = (nr_rxtx_thread_data_t *) NotifiedFifoData(newElt);
curMsgTx->proc = curMsg.proc;
curMsgTx->writeBlockSize = writeBlockSize;
curMsgTx->proc.timestamp_tx = writeTimestamp;
curMsgTx->UE = UE;
curMsgTx->tx_wait_for_dlsch = UE->tx_wait_for_dlsch[curMsgTx->proc.nr_slot_tx];
UE->tx_wait_for_dlsch[curMsgTx->proc.nr_slot_tx] = 0;
pushTpool(&(get_nrUE_params()->Tpool), newElt);
// RX slot processing. We launch and forget.
newElt = newNotifiedFIFO_elt(sizeof(nr_rxtx_thread_data_t), curMsg.proc.nr_slot_rx, NULL, UE_dl_processing);
nr_rxtx_thread_data_t *curMsgRx = (nr_rxtx_thread_data_t *) NotifiedFifoData(newElt);
curMsgRx->proc = curMsg.proc;
curMsgRx->UE = UE;
curMsgRx->phy_data = UE_dl_preprocessing(UE, &curMsg.proc);
pushTpool(&(get_nrUE_params()->Tpool), newElt);
// Wait for TX slot processing to finish
notifiedFIFO_elt_t *res;
res = pullTpool(&txFifo, &(get_nrUE_params()->Tpool));
if (res == NULL)
LOG_E(PHY, "Tpool has been aborted\n");
else
delNotifiedFIFO_elt(res);
} // while !oai_exit
return NULL;
}
void init_NR_UE(int nb_inst, char *uecap_file, char *reconfig_file, char *rbconfig_file)
{
int inst;
NR_UE_MAC_INST_t *mac_inst;
NR_UE_RRC_INST_t* rrc_inst;
for (inst=0; inst < nb_inst; inst++) {
AssertFatal((rrc_inst = nr_l3_init_ue(uecap_file, reconfig_file, rbconfig_file)) != NULL, "can not initialize RRC module\n");
AssertFatal((mac_inst = nr_l2_init_ue(rrc_inst)) != NULL, "can not initialize L2 module\n");
AssertFatal((mac_inst->if_module = nr_ue_if_module_init(inst)) != NULL, "can not initialize IF module\n");
}
}
void init_NR_UE_threads(int nb_inst) {
int inst;
pthread_t threads[nb_inst];
for (inst=0; inst < nb_inst; inst++) {
PHY_VARS_NR_UE *UE = PHY_vars_UE_g[inst][0];
LOG_I(PHY,"Intializing UE Threads for instance %d (%p,%p)...\n",inst,PHY_vars_UE_g[inst],PHY_vars_UE_g[inst][0]);
threadCreate(&threads[inst], UE_thread, (void *)UE, "UEthread", -1, OAI_PRIORITY_RT_MAX);
if (!IS_SOFTMODEM_NOSTATS_BIT) {
pthread_t stat_pthread;
threadCreate(&stat_pthread, nrL1_UE_stats_thread, UE, "L1_UE_stats", -1, OAI_PRIORITY_RT_LOW);
}
}
}