Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/** sodera_lib.c
*
* Author: Raymond Knopp
*/
#include <vector>
#include <string>
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include <string.h>
#include <pthread.h>
#include <unistd.h>
#include <iostream>
#include <complex>
#include <fstream>
#include <cmath>
#include "common_lib.h"
#include "lmsComms.h"
#include "LMS7002M.h"
#include "Si5351C.h"
#include "LMS_StreamBoard.h"
#include "openair1/PHY/sse_intrin.h"
using namespace std;
int num_devices=0;
/*These items configure the underlying asynch stream used by the the sync interface.
*/
#define BUFFERSIZE 4096
#define BUFFERSCOUNT 32
typedef struct
{
// --------------------------------
// variables for SoDeRa configuration
// --------------------------------
LMScomms Port;
Si5351C Si;
LMS7002M lmsControl;
LMS_StreamBoard *lmsStream;
char buffers_rx[BUFFERSIZE*BUFFERSCOUNT];
int handles[BUFFERSCOUNT];
int current_handle;
int samples_left_buffer;
double sample_rate;
// time offset between transmiter timestamp and receiver timestamp;
double tdiff;
int channelscount;
// --------------------------------
// Debug and output control
// --------------------------------
int num_underflows;
int num_overflows;
int num_seq_errors;
int64_t tx_count;
int64_t rx_count;
openair0_timestamp rx_timestamp;
} sodera_t;
typedef struct {
uint8_t reserved[8];
uint64_t counter;
char data[4080];
} StreamPacket_t;
sodera_t sodera_state;
enum STATUS {
SUCCESS,
FAILURE
};
STATUS SPI_write(LMScomms* dataPort, uint16_t address, uint16_t data)
{
assert(dataPort != nullptr);
LMScomms::GenericPacket ctrPkt;
ctrPkt.cmd = CMD_BRDSPI_WR;
ctrPkt.outBuffer.push_back((address >> 8) & 0xFF);
ctrPkt.outBuffer.push_back(address & 0xFF);
ctrPkt.outBuffer.push_back((data >> 8) & 0xFF);
ctrPkt.outBuffer.push_back(data & 0xFF);
dataPort->TransferPacket(ctrPkt);
return ctrPkt.status == 1 ? SUCCESS : FAILURE;
}
uint16_t SPI_read(LMScomms* dataPort, uint16_t address)
{
assert(dataPort != nullptr);
LMScomms::GenericPacket ctrPkt;
ctrPkt.cmd = CMD_BRDSPI_RD;
ctrPkt.outBuffer.push_back((address >> 8) & 0xFF);
ctrPkt.outBuffer.push_back(address & 0xFF);
dataPort->TransferPacket(ctrPkt);
if (ctrPkt.inBuffer.size() > 4)
return ctrPkt.inBuffer[2] * 256 + ctrPkt.inBuffer[3];
else
return 0;
}
static int trx_sodera_start(openair0_device *device)
{
sodera_t *s = (sodera_t*)device->priv;
// init recv and send streaming
printf("Starting LMS Streaming\n");
s->rx_count = 0;
s->tx_count = 0;
s->rx_timestamp = 0;
s->current_handle = 0;
// switch off RX
uint16_t regVal = SPI_read(&s->Port,0x0005);
SPI_write(&s->Port,0x0005,regVal & ~0x6);
// USB FIFO reset
LMScomms::GenericPacket ctrPkt;
ctrPkt.cmd = CMD_USB_FIFO_RST;
ctrPkt.outBuffer.push_back(0x01);
s->Port.TransferPacket(ctrPkt);
ctrPkt.outBuffer[0]=0x00;
s->Port.TransferPacket(ctrPkt);
regVal = SPI_read(&s->Port,0x0005);
// provide timestamp, set streamTXEN, set TX/RX enable
SPI_write(&s->Port,0x0005,(regVal & ~0x20) | 0x6);
if (s->channelscount==2) {
SPI_write(&s->Port,0x0001,0x0003);
SPI_write(&s->Port,0x0007,0x000A);
}
else {
SPI_write(&s->Port,0x0001,0x0001);
SPI_write(&s->Port,0x0007,0x0008);
}
for (int i=0; i< BUFFERSCOUNT ; i++)
s->handles[i] = s->Port.BeginDataReading(&s->buffers_rx[i*BUFFERSIZE],BUFFERSIZE);
printf("Armed %d transfers\n",BUFFERSCOUNT);
return 0;
}
static void trx_sodera_end(openair0_device *device)
{
sodera_t *s = (sodera_t*)device->priv;
// stop TX/RX if they were active
uint16_t regVal = SPI_read(&s->Port,0x0005);
SPI_write(&s->Port,0x0005,regVal & ~0x6);
}
static int trx_sodera_write(openair0_device *device, openair0_timestamp timestamp, void **buff, int nsamps, int cc, int flags)
{
sodera_t *s = (sodera_t*)device->priv;
return 0;
}
#define DEBUG_READ 1
static int trx_sodera_read(openair0_device *device, openair0_timestamp *ptimestamp, void **buff, int nsamps, int cc)
{
sodera_t *s = (sodera_t*)device->priv;
int samples_received=0,i,j;
int nsamps2; // aligned to upper 32 or 16 byte boundary
StreamPacket_t *p;
int16_t sampleI,sampleQ;
char *pktStart;
int offset = 0;
int num_p;
int ind=0;
int buffsize;
int spp;
int bufindex;
// this assumes that each request is of size 4096 bytes (spp = 4080/4/channelscount)
spp = sizeof(p->data)>>2; // spp = size of payload in samples
spp /= s->channelscount;
#ifdef DEBUG_READ
printf("\nIn trx_read\n");
printf("s->current_handle %d\n", s->current_handle);
printf("s->samples_left_buffer %d\n",s->samples_left_buffer);
#endif
// first get rid of remaining samples
if (s->samples_left_buffer > 0) {
buffsize = min(s->samples_left_buffer,nsamps);
pktStart = ((StreamPacket_t*)&s->buffers_rx[s->current_handle*BUFFERSIZE])->data;
pktStart += (spp-s->samples_left_buffer);
const int stepSize = s->channelscount * 3;
for (int b=0;b<buffsize<<2;b+=stepSize) {
for (int ch=0;ch<s->channelscount;ch++) {
// I sample
sampleI = (pktStart[b + 1 + 3*ch]&0x0F)<<8;
sampleI |= (pktStart[b + 3*ch]&0xFF);
sampleI = (sampleI<<4)>>4;
// Q sample
sampleQ = (pktStart[b + 2 + 3*ch]&0x0F)<<8;
sampleQ |= (pktStart[b + 1 + 3*ch]&0xFF);
sampleQ = (sampleQ<<4)>>4;
((uint32_t*)buff[ch])[ind] = ((uint32_t)sampleI) | (((uint32_t)sampleQ)<<16);
}
ind++;
}
}
if (ind == nsamps) {
s->samples_left_buffer -= nsamps;
s->rx_count += nsamps;
*ptimestamp = s->rx_timestamp;
s->rx_timestamp+=nsamps;
return(nsamps);
}
else {
s->samples_left_buffer = 0;
nsamps -= ind;
samples_received = ind;
}
// This is for the left-over part => READ from USB
num_p = nsamps / spp;
if ((nsamps%spp) > 0)
num_p++;
s->samples_left_buffer = (num_p*spp)-nsamps;
#ifdef DEBUG_READ
printf("num_p %d\n",num_p);
#endif
const int stepSize = s->channelscount * 3;
for (i=0;i<num_p;i++) {
bufindex = (s->current_handle+i)&(BUFFERSCOUNT-1);
if (s->Port.WaitForReading(s->handles[bufindex],1000) == false) {
printf("[recv] Error: request %d samples (%d/%d) WaitForReading timed out\n",nsamps,bufindex,num_p);
*ptimestamp = s->rx_timestamp;
s->rx_timestamp+=samples_received;
return(samples_received);
}
long bytesToRead=BUFFERSIZE;
if (s->Port.FinishDataReading(&s->buffers_rx[bufindex*BUFFERSIZE],bytesToRead,s->handles[bufindex]) != BUFFERSIZE) {
printf("[recv] Error: request %d samples (%d/%d) WaitForReading timed out\n",nsamps,bufindex,num_p);
*ptimestamp = s->rx_timestamp;
s->rx_timestamp+=samples_received;
return(samples_received);
}
p = (StreamPacket_t*)&s->buffers_rx[bufindex*BUFFERSIZE];
// handle timestamp
if ((i==0) & (ind==0)) { // grab the timestamp from HW
*ptimestamp = p->counter;
s->rx_timestamp = p->counter+nsamps; // for next time
#ifdef DEBUG_READ
printf("RX timestamp %d\n",s->rx_timestamp);
#endif
}
else { // check the timestamp
if (i==0) {
if ((s->rx_timestamp + ind) != p->counter) {
printf("Error, RX timestamp error, got %lu, should be %llu\n",p->counter,s->rx_timestamp+ind);
return(ind);
}
}
*ptimestamp = s->rx_timestamp;
s->rx_timestamp+=nsamps;
}
pktStart = p->data;
for (uint16_t b=0;b<sizeof(p->data);b+=stepSize) {
for (int ch=0;ch < s->channelscount;ch++) {
// I sample
sampleI = (pktStart[b + 1 + 3*ch]&0x0F)<<8;
sampleI |= (pktStart[b + 3*ch]&0xFF);
sampleI = (sampleI<<4)>>4;
// Q sample
sampleQ = (pktStart[b + 2 + 3*ch]&0x0F)<<8;
sampleQ |= (pktStart[b + 1 + 3*ch]&0xFF);
sampleQ = (sampleQ<<4)>>4;
((uint32_t*)buff[ch])[ind] = ((uint32_t)sampleI) | (((uint32_t)sampleQ)<<16);
}
ind++;
}
samples_received+=spp;
// schedule a new transmission for this index
s->handles[bufindex] = s->Port.BeginDataReading(&s->buffers_rx[bufindex*BUFFERSIZE],BUFFERSIZE);
s->current_handle=(s->current_handle+1)&(BUFFERSCOUNT-1);
}
//handle the error code
s->rx_count += samples_received;
// s->rx_timestamp = s->rx_md.time_spec.to_ticks(s->sample_rate);
return samples_received;
}
static bool is_equal(double a, double b)
{
return fabs(a-b) < 1e-6;
}
int trx_sodera_set_freq(openair0_device* device, openair0_config_t *openair0_cfg, int dummy) {
sodera_t *s = (sodera_t*)device->priv;
// s->usrp->set_tx_freq(openair0_cfg[0].tx_freq[0]);
// s->usrp->set_rx_freq(openair0_cfg[0].rx_freq[0]);
return(0);
}
int openair0_set_rx_frequencies(openair0_device* device, openair0_config_t *openair0_cfg) {
sodera_t *s = (sodera_t*)device->priv;
static int first_call=1;
static double rf_freq,diff;
// uhd::tune_request_t rx_tune_req(openair0_cfg[0].rx_freq[0]);
// rx_tune_req.rf_freq_policy = uhd::tune_request_t::POLICY_MANUAL;
// rx_tune_req.rf_freq = openair0_cfg[0].rx_freq[0];
// rf_freq=openair0_cfg[0].rx_freq[0];
// s->usrp->set_rx_freq(rx_tune_req);
return(0);
}
int trx_sodera_set_gains(openair0_device* device,
openair0_config_t *openair0_cfg) {
sodera_t *s = (sodera_t*)device->priv;
// s->usrp->set_tx_gain(openair0_cfg[0].tx_gain[0]);
// ::uhd::gain_range_t gain_range = s->usrp->get_rx_gain_range(0);
// limit to maximum gain
/* if (openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0] > gain_range.stop()) {
printf("RX Gain 0 too high, reduce by %f dB\n",
openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0] - gain_range.stop());
exit(-1);
}
s->usrp->set_rx_gain(openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0]);
printf("Setting SODERA RX gain to %f (rx_gain %f,gain_range.stop() %f)\n", openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0],openair0_cfg[0].rx_gain[0],gain_range.stop());
*/
return(0);
}
int trx_sodera_stop(int card) {
return(0);
}
rx_gain_calib_table_t calib_table_sodera[] = {
{3500000000.0,44.0},
{2660000000.0,49.0},
{2300000000.0,50.0},
{1880000000.0,53.0},
{816000000.0,58.0},
{-1,0}};
void set_rx_gain_offset(openair0_config_t *openair0_cfg, int chain_index,int bw_gain_adjust) {
int i=0;
// loop through calibration table to find best adjustment factor for RX frequency
double min_diff = 6e9,diff,gain_adj=0.0;
if (bw_gain_adjust==1) {
switch ((int)openair0_cfg[0].sample_rate) {
case 30720000:
break;
case 23040000:
gain_adj=1.25;
break;
case 15360000:
gain_adj=3.0;
break;
case 7680000:
gain_adj=6.0;
break;
case 3840000:
gain_adj=9.0;
break;
case 1920000:
gain_adj=12.0;
break;
default:
printf("unknown sampling rate %d\n",(int)openair0_cfg[0].sample_rate);
exit(-1);
break;
}
}
while (openair0_cfg->rx_gain_calib_table[i].freq>0) {
diff = fabs(openair0_cfg->rx_freq[chain_index] - openair0_cfg->rx_gain_calib_table[i].freq);
printf("cal %d: freq %f, offset %f, diff %f\n",
i,
openair0_cfg->rx_gain_calib_table[i].freq,
openair0_cfg->rx_gain_calib_table[i].offset,diff);
if (min_diff > diff) {
min_diff = diff;
openair0_cfg->rx_gain_offset[chain_index] = openair0_cfg->rx_gain_calib_table[i].offset+gain_adj;
}
i++;
}
}
int trx_sodera_get_stats(openair0_device* device) {
return(0);
}
int trx_sodera_reset_stats(openair0_device* device) {
return(0);
}
int openair0_dev_init_sodera(openair0_device* device, openair0_config_t *openair0_cfg)
{
sodera_t *s=&sodera_state;
size_t i;
// Initialize SODERA device
s->Port.RefreshDeviceList();
vector<string> deviceNames=s->Port.GetDeviceList();
if (deviceNames.size() == 1) {
if (s->Port.Open(0) != IConnection::SUCCESS) {
printf("Cannot open SoDeRa\n");
exit(-1);
}
LMSinfo devInfo = s->Port.GetInfo();
printf("Device %s, HW: %d, FW: %d, Protocol %d\n",
GetDeviceName(devInfo.device),
(int)devInfo.hardware,
(int)devInfo.firmware,
(int)devInfo.protocol);
printf("Configuring Si5351C\n");
s->Si.Initialize(&s->Port);
s->Si.SetPLL(0, 25000000, 0);
s->Si.SetPLL(1, 25000000, 0);
s->Si.SetClock(0, 27000000, true, false);
s->Si.SetClock(1, 27000000, true, false);
for (int i = 2; i < 8; ++i)
s->Si.SetClock(i, 27000000, false, false);
Si5351C::Status status = s->Si.ConfigureClocks();
if (status != Si5351C::SUCCESS)
{
printf("Failed to configure Si5351C");
exit(-1);
}
status = s->Si.UploadConfiguration();
if (status != Si5351C::SUCCESS)
printf("Failed to upload Si5351C configuration");
printf("Configuring LMS7002\n");
int bw_gain_adjust=0;
openair0_cfg[0].rx_gain_calib_table = calib_table_sodera;
switch ((int)openair0_cfg[0].sample_rate) {
case 30720000:
// from usrp_time_offset
openair0_cfg[0].samples_per_packet = 2048;
openair0_cfg[0].tx_sample_advance = 15;
openair0_cfg[0].tx_bw = 20e6;
openair0_cfg[0].rx_bw = 20e6;
openair0_cfg[0].tx_scheduling_advance = 8*openair0_cfg[0].samples_per_packet;
break;
case 15360000:
openair0_cfg[0].samples_per_packet = 2048;
openair0_cfg[0].tx_sample_advance = 45;
openair0_cfg[0].tx_bw = 10e6;
openair0_cfg[0].rx_bw = 10e6;
openair0_cfg[0].tx_scheduling_advance = 5*openair0_cfg[0].samples_per_packet;
break;
case 7680000:
openair0_cfg[0].samples_per_packet = 1024;
openair0_cfg[0].tx_sample_advance = 50;
openair0_cfg[0].tx_bw = 5e6;
openair0_cfg[0].rx_bw = 5e6;
openair0_cfg[0].tx_scheduling_advance = 5*openair0_cfg[0].samples_per_packet;
break;
case 1920000:
openair0_cfg[0].samples_per_packet = 256;
openair0_cfg[0].tx_sample_advance = 50;
openair0_cfg[0].tx_bw = 1.25e6;
openair0_cfg[0].rx_bw = 1.25e6;
openair0_cfg[0].tx_scheduling_advance = 8*openair0_cfg[0].samples_per_packet;
break;
default:
printf("Error: unknown sampling rate %f\n",openair0_cfg[0].sample_rate);
exit(-1);
break;
}
s->lmsControl = LMS7002M(&s->Port);
liblms7_status opStatus;
s->lmsControl.ResetChip();
opStatus = s->lmsControl.LoadConfig(openair0_cfg[0].configFilename);
if (opStatus != LIBLMS7_SUCCESS) {
printf("Failed to load configuration file %s\n",openair0_cfg[0].configFilename);
exit(-1);
}
opStatus = s->lmsControl.UploadAll();
if (opStatus != LIBLMS7_SUCCESS) {
printf("Failed to upload configuration file\n");
exit(-1);
}
opStatus = s->lmsControl.SetFrequencySX(LMS7002M::Tx, openair0_cfg[0].tx_freq[0]/1e6,30.72);
if (opStatus != LIBLMS7_SUCCESS) {
printf("Cannot set TX frequency %f MHz\n",openair0_cfg[0].tx_freq[0]/1e6);
exit(-1);
}
opStatus = s->lmsControl.SetFrequencySX(LMS7002M::Rx, openair0_cfg[0].rx_freq[0]/1e6,30.72);
if (opStatus != LIBLMS7_SUCCESS) {
printf("Cannot set RX frequency %f MHz\n",openair0_cfg[0].rx_freq[0]/1e6);
exit(-1);
}
// this makes RX/TX sampling rates equal
opStatus = s->lmsControl.Modify_SPI_Reg_bits(EN_ADCCLKH_CLKGN,0);
if (opStatus != LIBLMS7_SUCCESS) {
printf("Cannot modify SPI (EN_ADCCLKH_CLKGN)\n");
exit(-1);
}
opStatus = s->lmsControl.Modify_SPI_Reg_bits(CLKH_OV_CLKL_CGEN,2);
if (opStatus != LIBLMS7_SUCCESS) {
printf("Cannot modify SPI (CLKH_OV_CLKL_CGEN)\n");
exit(-1);
}
const float cgen_freq_MHz = 245.76;
const int interpolation = 0; // real interpolation = 2
const int decimation = 0; // real decimation = 2
opStatus = s->lmsControl.SetInterfaceFrequency(cgen_freq_MHz,interpolation,decimation);
if (opStatus != LIBLMS7_SUCCESS) {
printf("Cannot SetInterfaceFrequency (%f,%d,%d)\n",cgen_freq_MHz,interpolation,decimation);
exit(-1);
}
/*
// Run calibration procedure
float txrx_calibrationBandwidth_MHz = 5;
opStatus = s->lmsControl.CalibrateTx(txrx_calibrationBandwidth_MHz);
if (opStatus != LIBLMS7_SUCCESS){
printf("TX Calibration failed\n");
exit(-1);
}
opStatus = s->lmsControl.CalibrateRx(txrx_calibrationBandwidth_MHz);
if (opStatus != LIBLMS7_SUCCESS){
printf("RX Calibration failed\n");
exit(-1);
}
*/
s->lmsStream = new LMS_StreamBoard(&s->Port);
LMS_StreamBoard::Status opStreamStatus;
// this will configure that sampling rate at output of FPGA
opStreamStatus = s->lmsStream->ConfigurePLL(&s->Port,openair0_cfg[0].sample_rate,openair0_cfg[0].sample_rate,90);
if (opStatus != LIBLMS7_SUCCESS){
printf("Sample rate programming failed\n");
exit(-1);
}
/*
::uhd::gain_range_t gain_range = s->usrp->get_rx_gain_range(i);
// limit to maximum gain
if (openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i] > gain_range.stop()) {
printf("RX Gain %lu too high, lower by %f dB\n",i,openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i] - gain_range.stop());
exit(-1);
}
s->usrp->set_rx_gain(openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i],i);
printf("RX Gain %lu %f (%f) => %f (max %f)\n",i,
openair0_cfg[0].rx_gain[i],openair0_cfg[0].rx_gain_offset[i],
openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i],gain_range.stop());
}
}
for(i=0;i<s->usrp->get_tx_num_channels();i++) {
if (i<openair0_cfg[0].tx_num_channels) {
s->usrp->set_tx_rate(openair0_cfg[0].sample_rate,i);
s->usrp->set_tx_bandwidth(openair0_cfg[0].tx_bw,i);
printf("Setting tx freq/gain on channel %lu/%lu: BW %f (readback %f)\n",i,s->usrp->get_tx_num_channels(),openair0_cfg[0].tx_bw/1e6,s->usrp->get_tx_bandwidth(i)/1e6);
s->usrp->set_tx_freq(openair0_cfg[0].tx_freq[i],i);
s->usrp->set_tx_gain(openair0_cfg[0].tx_gain[i],i);
}
}
*/
// create tx & rx streamer
//stream_args_rx.args["spp"] = str(boost::format("%d") % 2048);//(openair0_cfg[0].rx_num_channels*openair0_cfg[0].samples_per_packet));
/*
for (i=0;i<openair0_cfg[0].rx_num_channels;i++) {
if (i<openair0_cfg[0].rx_num_channels) {
printf("RX Channel %lu\n",i);
std::cout << boost::format("Actual RX sample rate: %fMSps...") % (s->usrp->get_rx_rate(i)/1e6) << std::endl;
std::cout << boost::format("Actual RX frequency: %fGHz...") % (s->usrp->get_rx_freq(i)/1e9) << std::endl;
std::cout << boost::format("Actual RX gain: %f...") % (s->usrp->get_rx_gain(i)) << std::endl;
std::cout << boost::format("Actual RX bandwidth: %fM...") % (s->usrp->get_rx_bandwidth(i)/1e6) << std::endl;
std::cout << boost::format("Actual RX antenna: %s...") % (s->usrp->get_rx_antenna(i)) << std::endl;
}
}
for (i=0;i<openair0_cfg[0].tx_num_channels;i++) {
if (i<openair0_cfg[0].tx_num_channels) {
printf("TX Channel %lu\n",i);
std::cout << std::endl<<boost::format("Actual TX sample rate: %fMSps...") % (s->usrp->get_tx_rate(i)/1e6) << std::endl;
std::cout << boost::format("Actual TX frequency: %fGHz...") % (s->usrp->get_tx_freq(i)/1e9) << std::endl;
std::cout << boost::format("Actual TX gain: %f...") % (s->usrp->get_tx_gain(i)) << std::endl;
std::cout << boost::format("Actual TX bandwidth: %fM...") % (s->usrp->get_tx_bandwidth(i)/1e6) << std::endl;
std::cout << boost::format("Actual TX antenna: %s...") % (s->usrp->get_tx_antenna(i)) << std::endl;
}
*/
}
else {
printf("Please connect SoDeRa\n");
exit(-1);
}
device->priv = s;
device->trx_start_func = trx_sodera_start;
device->trx_write_func = trx_sodera_write;
device->trx_read_func = trx_sodera_read;
device->trx_get_stats_func = trx_sodera_get_stats;
device->trx_reset_stats_func = trx_sodera_reset_stats;
device->trx_end_func = trx_sodera_end;
device->trx_stop_func = trx_sodera_stop;
device->trx_set_freq_func = trx_sodera_set_freq;
device->trx_set_gains_func = trx_sodera_set_gains;
s->sample_rate = openair0_cfg[0].sample_rate;
s->channelscount = openair0_cfg[0].rx_num_channels;
// TODO:
return 0;
}