Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
#include "assertions.h"
#ifndef CONVERSIONS_H_
#define CONVERSIONS_H_
/* Endianness conversions for 16 and 32 bits integers from host to network order */
#if (BYTE_ORDER == LITTLE_ENDIAN)
# define hton_int32(x) \
(((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | \
((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24))
# define hton_int16(x) \
(((x & 0x00FF) << 8) | ((x & 0xFF00) >> 8)
# define ntoh_int32_buf(bUF) \
((*(bUF)) << 24) | ((*((bUF) + 1)) << 16) | ((*((bUF) + 2)) << 8) \
| (*((bUF) + 3))
#else
# define hton_int32(x) (x)
# define hton_int16(x) (x)
#endif
#define IN_ADDR_TO_BUFFER(X,bUFF) INT32_TO_BUFFER((X).s_addr,(char*)bUFF)
#define IN6_ADDR_TO_BUFFER(X,bUFF) \
do { \
((uint8_t*)(bUFF))[0] = (X).s6_addr[0]; \
((uint8_t*)(bUFF))[1] = (X).s6_addr[1]; \
((uint8_t*)(bUFF))[2] = (X).s6_addr[2]; \
((uint8_t*)(bUFF))[3] = (X).s6_addr[3]; \
((uint8_t*)(bUFF))[4] = (X).s6_addr[4]; \
((uint8_t*)(bUFF))[5] = (X).s6_addr[5]; \
((uint8_t*)(bUFF))[6] = (X).s6_addr[6]; \
((uint8_t*)(bUFF))[7] = (X).s6_addr[7]; \
((uint8_t*)(bUFF))[8] = (X).s6_addr[8]; \
((uint8_t*)(bUFF))[9] = (X).s6_addr[9]; \
((uint8_t*)(bUFF))[10] = (X).s6_addr[10]; \
((uint8_t*)(bUFF))[11] = (X).s6_addr[11]; \
((uint8_t*)(bUFF))[12] = (X).s6_addr[12]; \
((uint8_t*)(bUFF))[13] = (X).s6_addr[13]; \
((uint8_t*)(bUFF))[14] = (X).s6_addr[14]; \
((uint8_t*)(bUFF))[15] = (X).s6_addr[15]; \
} while(0)
#define BUFFER_TO_INT8(buf, x) (x = ((buf)[0]))
#define INT8_TO_BUFFER(x, buf) ((buf)[0] = (x))
/* Convert an integer on 16 bits to the given bUFFER */
#define INT16_TO_BUFFER(x, buf) \
do { \
(buf)[0] = ((x) >> 8) & 0xff; \
(buf)[1] = (x) & 0xff; \
} while(0)
/* Convert an array of char containing vALUE to x */
#define BUFFER_TO_INT16(buf, x) \
do { \
x = ((buf)[0] << 8) | \
((buf)[1]); \
} while(0)
/* Convert an integer on 24 bits to the given bUFFER */
#define INT24_TO_BUFFER(x, buf) \
do { \
(buf)[0] = ((x) >> 16) & 0xff;\
(buf)[1] = ((x) >> 8) & 0xff; \
(buf)[2] = (x) & 0xff; \
} while(0)
/* Convert an array of char containing vALUE to x */
#define BUFFER_TO_INT24(buf, x) \
do { \
x = ((buf)[0] << 16) | \
((buf)[1] << 8 ) | \
((buf)[2]); \
} while(0)
/* Convert an integer on 32 bits to the given bUFFER */
#define INT32_TO_BUFFER(x, buf) \
do { \
(buf)[0] = ((x) >> 24) & 0xff;\
(buf)[1] = ((x) >> 16) & 0xff;\
(buf)[2] = ((x) >> 8) & 0xff; \
(buf)[3] = (x) & 0xff; \
} while(0)
/* Convert an array of char containing vALUE to x */
#define BUFFER_TO_INT32(buf, x) \
do { \
x = ((buf)[0] << 24) | \
((buf)[1] << 16) | \
((buf)[2] << 8) | \
((buf)[3]); \
} while(0)
/* Convert an array of char containing vALUE to x */
#define BUFFER_TO_UINT32(buf, x) \
do { \
x = (((uint32_t)((buf)[0])) << 24) | \
(((uint32_t)((buf)[1])) << 16) | \
(((uint32_t)((buf)[2])) << 8) | \
(((uint32_t)((buf)[3]))); \
} while (0)
/* Convert an integer on 32 bits to an octet string from aSN1c tool */
#define INT32_TO_OCTET_STRING(x, aSN) \
do { \
(aSN)->buf = calloc(4, sizeof(uint8_t)); \
INT32_TO_BUFFER(x, ((aSN)->buf)); \
(aSN)->size = 4; \
} while(0)
#define INT32_TO_BIT_STRING(x, aSN) \
do { \
INT32_TO_OCTET_STRING(x, aSN); \
(aSN)->bits_unused = 0; \
} while(0)
#define INT16_TO_OCTET_STRING(x, aSN) \
do { \
(aSN)->buf = calloc(2, sizeof(uint8_t)); \
INT16_TO_BUFFER(x, ((aSN)->buf)); \
(aSN)->size = 2; \
} while(0)
#define INT16_TO_BIT_STRING(x, aSN) \
do { \
INT16_TO_OCTET_STRING(x, aSN); \
(aSN)->bits_unused = 0; \
} while(0)
#define INT24_TO_OCTET_STRING(x, aSN) \
do { \
(aSN)->buf = calloc(3, sizeof(uint8_t)); \
INT24_TO_BUFFER(x, ((aSN)->buf)); \
(aSN)->size = 3; \
} while(0)
#define INT24_TO_BIT_STRING(x, aSN) \
do { \
INT24_TO_OCTET_STRING(x, aSN); \
(aSN)->bits_unused = 0; \
} while(0)
#define INT8_TO_OCTET_STRING(x, aSN) \
do { \
(aSN)->buf = calloc(1, sizeof(uint8_t)); \
(aSN)->size = 1; \
INT8_TO_BUFFER(x, (aSN)->buf); \
} while(0)
#define MME_CODE_TO_OCTET_STRING INT8_TO_OCTET_STRING
#define M_TMSI_TO_OCTET_STRING INT32_TO_OCTET_STRING
#define MME_GID_TO_OCTET_STRING INT16_TO_OCTET_STRING
#define AMF_REGION_TO_BIT_STRING(x, aSN) \
do { \
INT8_TO_OCTET_STRING(x, aSN); \
(aSN)->bits_unused = 0; \
} while(0)
#define AMF_SETID_TO_BIT_STRING(x, aSN) \
do { \
INT16_TO_OCTET_STRING(x, aSN); \
(aSN)->bits_unused = 6; \
} while(0)
#define AMF_POINTER_TO_BIT_STRING(x, aSN) \
do { \
INT8_TO_OCTET_STRING(x, aSN); \
(aSN)->bits_unused = 2; \
} while(0)
#define ENCRALG_TO_BIT_STRING(encralg, bitstring) \
do { \
(bitstring)->size=2; \
(bitstring)->bits_unused=0; \
(bitstring)->buf=calloc (2, sizeof (uint8_t)); \
(bitstring)->buf[0] = (encralg) >> 8; \
(bitstring)->buf[1] = (encralg); \
}while(0)
#define INTPROTALG_TO_BIT_STRING(intprotalg, bitstring) \
do { \
(bitstring)->size=2; \
(bitstring)->bits_unused=0; \
(bitstring)->buf=calloc (2, sizeof (uint8_t)); \
(bitstring)->buf[0] = (intprotalg) >> 8; \
(bitstring)->buf[1] = (intprotalg); \
}while(0)
#define KENB_STAR_TO_BIT_STRING(kenbstar, bitstring) \
do { \
(bitstring)->size=32; \
(bitstring)->bits_unused=0; \
(bitstring)->buf= calloc (32, sizeof (uint8_t));\
memcpy((bitstring)->buf, kenbstar, 32*sizeof(uint8_t)); \
}while(0)
#define UEAGMAXBITRTD_TO_ASN_PRIMITIVES(uegmaxbitrtd, asnprimitives) \
do { \
(asnprimitives)->size=5; \
(asnprimitives)->buf=calloc (5, sizeof (uint8_t)); \
(asnprimitives)->buf[0] = (uegmaxbitrtd) >> 32; \
(asnprimitives)->buf[1] = (uegmaxbitrtd) >> 24; \
(asnprimitives)->buf[2] = (uegmaxbitrtd) >> 16; \
(asnprimitives)->buf[3] = (uegmaxbitrtd) >> 8; \
(asnprimitives)->buf[4] = (uegmaxbitrtd); \
}while(0)
#define UEAGMAXBITRTU_TO_ASN_PRIMITIVES(uegmaxbitrtu, asnprimitives) \
do { \
(asnprimitives)->size=5; \
(asnprimitives)->buf=calloc (5, sizeof (uint8_t)); \
(asnprimitives)->buf[0] = (uegmaxbitrtu) >> 32; \
(asnprimitives)->buf[1] = (uegmaxbitrtu) >> 24; \
(asnprimitives)->buf[2] = (uegmaxbitrtu) >> 16; \
(asnprimitives)->buf[3] = (uegmaxbitrtu) >> 8; \
(asnprimitives)->buf[4] = (uegmaxbitrtu); \
}while(0)
#define OCTET_STRING_TO_INT8(aSN, x) \
do { \
DevCheck((aSN)->size == 1, (aSN)->size, 0, 0); \
BUFFER_TO_INT8((aSN)->buf, x); \
} while(0)
#define OCTET_STRING_TO_INT16(aSN, x) \
do { \
DevCheck((aSN)->size == 2 || (aSN)->size == 3, (aSN)->size, 0, 0); \
BUFFER_TO_INT16((aSN)->buf, x); \
} while(0)
#define OCTET_STRING_TO_INT24(aSN, x) \
do { \
DevCheck((aSN)->size == 2 || (aSN)->size == 3, (aSN)->size, 0, 0); \
BUFFER_TO_INT24((aSN)->buf, x); \
} while(0)
#define OCTET_STRING_TO_INT32(aSN, x) \
do { \
DevCheck((aSN)->size == 4, (aSN)->size, 0, 0); \
BUFFER_TO_INT32((aSN)->buf, x); \
} while(0)
#define OCTET_STRING_TO_UINT32(aSN, x) \
do { \
DevCheck((aSN)->size == 4, (aSN)->size, 0, 0); \
BUFFER_TO_UINT32((aSN)->buf, x); \
} while (0)
#define BIT_STRING_TO_INT32(aSN, x) \
do { \
DevCheck((aSN)->bits_unused == 0, (aSN)->bits_unused, 0, 0); \
OCTET_STRING_TO_INT32(aSN, x); \
} while(0)
#define BIT_STRING_TO_CELL_IDENTITY(aSN, vALUE) \
do { \
DevCheck((aSN)->bits_unused == 4, (aSN)->bits_unused, 4, 0); \
vALUE = ((aSN)->buf[0] << 20) | ((aSN)->buf[1] << 12) | \
((aSN)->buf[2] << 4) | (aSN)->buf[3]; \
} while(0)
#define BIT_STRING_TO_NR_CELL_IDENTITY(aSN, vALUE) \
do { \
DevCheck((aSN)->bits_unused == 4, (aSN)->bits_unused, 4, 0); \
vALUE = ((aSN)->buf[0] << 28) | ((aSN)->buf[1] << 20) | \
((aSN)->buf[2] << 12) | ((aSN)->buf[3]<<4) | ((aSN)->buf[4]>>4); \
} while(0)
#define MCC_HUNDREDS(vALUE) \
((vALUE) / 100)
/* When MNC is only composed of 2 digits, set the hundreds unit to 0xf */
#define MNC_HUNDREDS(vALUE, mNCdIGITlENGTH) \
( mNCdIGITlENGTH == 2 ? 15 : (vALUE) / 100)
#define MCC_MNC_DECIMAL(vALUE) \
(((vALUE) / 10) % 10)
#define MCC_MNC_DIGIT(vALUE) \
((vALUE) % 10)
#define MCC_TO_BUFFER(mCC, bUFFER) \
do { \
DevAssert(bUFFER != NULL); \
(bUFFER)[0] = MCC_HUNDREDS(mCC); \
(bUFFER)[1] = MCC_MNC_DECIMAL(mCC); \
(bUFFER)[2] = MCC_MNC_DIGIT(mCC); \
} while(0)
#define MCC_MNC_TO_PLMNID(mCC, mNC, mNCdIGITlENGTH, oCTETsTRING) \
do { \
(oCTETsTRING)->buf = calloc(3, sizeof(uint8_t)); \
(oCTETsTRING)->buf[0] = (MCC_MNC_DECIMAL(mCC) << 4) | MCC_HUNDREDS(mCC); \
(oCTETsTRING)->buf[1] = (MNC_HUNDREDS(mNC,mNCdIGITlENGTH) << 4) | MCC_MNC_DIGIT(mCC); \
(oCTETsTRING)->buf[2] = (MCC_MNC_DIGIT(mNC) << 4) | MCC_MNC_DECIMAL(mNC); \
(oCTETsTRING)->size = 3; \
} while(0)
#define PLMNID_TO_MCC_MNC(oCTETsTRING, mCC, mNC, mNCdIGITlENGTH) \
do { \
mCC = ((oCTETsTRING)->buf[0] & 0x0F) * 100 + \
((oCTETsTRING)->buf[0] >> 4 & 0x0F) * 10 + \
((oCTETsTRING)->buf[1] & 0x0F); \
mNCdIGITlENGTH = ((oCTETsTRING)->buf[1] >> 4 & 0x0F) == 0xF ? 2 : 3; \
mNC = (mNCdIGITlENGTH == 2 ? 0 : ((oCTETsTRING)->buf[1] >> 4 & 0x0F) * 100) + \
((oCTETsTRING)->buf[2] & 0x0F) * 10 + \
((oCTETsTRING)->buf[2] >> 4 & 0x0F); \
} while (0)
#define MCC_MNC_TO_TBCD(mCC, mNC, mNCdIGITlENGTH, tBCDsTRING) \
do { \
char _buf[3]; \
DevAssert((mNCdIGITlENGTH == 3) || (mNCdIGITlENGTH == 2)); \
_buf[0] = (MCC_MNC_DECIMAL(mCC) << 4) | MCC_HUNDREDS(mCC); \
_buf[1] = (MNC_HUNDREDS(mNC,mNCdIGITlENGTH) << 4) | MCC_MNC_DIGIT(mCC);\
_buf[2] = (MCC_MNC_DIGIT(mNC) << 4) | MCC_MNC_DECIMAL(mNC); \
OCTET_STRING_fromBuf(tBCDsTRING, _buf, 3); \
} while(0)
#define TBCD_TO_MCC_MNC(tBCDsTRING, mCC, mNC, mNCdIGITlENGTH) \
do { \
int mNC_hundred; \
DevAssert((tBCDsTRING)->size == 3); \
mNC_hundred = (((tBCDsTRING)->buf[1] & 0xf0) >> 4); \
if (mNC_hundred == 0xf) { \
mNC_hundred = 0; \
mNCdIGITlENGTH = 2; \
} else { \
mNCdIGITlENGTH = 3; \
} \
mCC = (((((tBCDsTRING)->buf[0]) & 0xf0) >> 4) * 10) + \
((((tBCDsTRING)->buf[0]) & 0x0f) * 100) + \
(((tBCDsTRING)->buf[1]) & 0x0f); \
mNC = (mNC_hundred * 100) + \
((((tBCDsTRING)->buf[2]) & 0xf0) >> 4) + \
((((tBCDsTRING)->buf[2]) & 0x0f) * 10); \
} while(0)
#define TBCD_TO_PLMN_T(tBCDsTRING, pLMN) \
do { \
DevAssert((tBCDsTRING)->size == 3); \
(pLMN)->MCCdigit2 = (((tBCDsTRING)->buf[0] & 0xf0) >> 4); \
(pLMN)->MCCdigit3 = ((tBCDsTRING)->buf[0] & 0x0f); \
(pLMN)->MCCdigit1 = (tBCDsTRING)->buf[1] & 0x0f; \
(pLMN)->MNCdigit3 = (((tBCDsTRING)->buf[1] & 0xf0) >> 4) == 0xF \
? 0 : (((tBCDsTRING)->buf[1] & 0xf0) >> 4); \
(pLMN)->MNCdigit2 = (((tBCDsTRING)->buf[2] & 0xf0) >> 4); \
(pLMN)->MNCdigit1 = ((tBCDsTRING)->buf[2] & 0x0f); \
} while(0)
#define PLMN_T_TO_TBCD(pLMN, tBCDsTRING, mNClENGTH) \
do { \
tBCDsTRING[0] = (pLMN.MCCdigit2 << 4) | pLMN.MCCdigit1; \
/* ambiguous (think about len 2) */ \
if (mNClENGTH == 2) { \
tBCDsTRING[1] = (0x0F << 4) | pLMN.MCCdigit3; \
tBCDsTRING[2] = (pLMN.MNCdigit2 << 4) | pLMN.MNCdigit1; \
} else { \
tBCDsTRING[1] = (pLMN.MNCdigit3 << 4) | pLMN.MCCdigit3; \
tBCDsTRING[2] = (pLMN.MNCdigit2 << 4) | pLMN.MNCdigit1; \
} \
} while(0)
#define PLMN_T_TO_MCC_MNC(pLMN, mCC, mNC, mNCdIGITlENGTH) \
do { \
mCC = pLMN.MCCdigit3 * 100 + pLMN.MCCdigit2 * 10 + pLMN.MCCdigit1; \
mNCdIGITlENGTH = (pLMN.MNCdigit3 == 0xF ? 2 : 3); \
mNC = (mNCdIGITlENGTH == 2 ? 0 : pLMN.MNCdigit3 * 100) \
+ pLMN.MNCdigit2 * 10 + pLMN.MNCdigit1; \
} while(0)
/* TS 38.473 v15.2.1 section 9.3.1.32:
* C RNTI is BIT_STRING(16)
*/
#define C_RNTI_TO_BIT_STRING(mACRO, bITsTRING) \
do { \
(bITsTRING)->buf = calloc(2, sizeof(uint8_t)); \
(bITsTRING)->buf[0] = (mACRO) >> 8; \
(bITsTRING)->buf[1] = ((mACRO) & 0x0ff); \
(bITsTRING)->size = 2; \
(bITsTRING)->bits_unused = 0; \
} while(0)
/* TS 38.473 v15.2.1 section 9.3.2.3:
* TRANSPORT LAYER ADDRESS for IPv4 is 32bit (TS 38.414)
*/
#define TRANSPORT_LAYER_ADDRESS_IPv4_TO_BIT_STRING(mACRO, bITsTRING) \
do { \
(bITsTRING)->buf = calloc(4, sizeof(uint8_t)); \
(bITsTRING)->buf[3] = (mACRO) >> 24 & 0xFF; \
(bITsTRING)->buf[2] = (mACRO) >> 16 & 0xFF; \
(bITsTRING)->buf[1] = (mACRO) >> 8 & 0xFF; \
(bITsTRING)->buf[0] = (mACRO) & 0xFF; \
(bITsTRING)->size = 4; \
(bITsTRING)->bits_unused = 0; \
} while(0)
#define BIT_STRING_TO_TRANSPORT_LAYER_ADDRESS_IPv4(bITsTRING, mACRO) \
do { \
DevCheck((bITsTRING)->size == 4, (bITsTRING)->size, 4, 0); \
DevCheck((bITsTRING)->bits_unused == 0, (bITsTRING)->bits_unused, 0, 0); \
mACRO = ((bITsTRING)->buf[3] << 24) + \
((bITsTRING)->buf[2] << 16) + \
((bITsTRING)->buf[1] << 8) + \
((bITsTRING)->buf[0]); \
} while (0)
/* TS 38.473 v15.1.1 section 9.3.1.12:
* NR CELL ID
*/
#define NR_CELL_ID_TO_BIT_STRING(mACRO, bITsTRING) \
do { \
(bITsTRING)->buf = calloc(5, sizeof(uint8_t)); \
(bITsTRING)->buf[0] = ((mACRO) >> 28) & 0xff; \
(bITsTRING)->buf[1] = ((mACRO) >> 20) & 0xff; \
(bITsTRING)->buf[2] = ((mACRO) >> 12) & 0xff; \
(bITsTRING)->buf[3] = ((mACRO) >> 4) & 0xff; \
(bITsTRING)->buf[4] = ((mACRO) & 0x0f) << 4; \
(bITsTRING)->size = 5; \
(bITsTRING)->bits_unused = 4; \
} while(0)
/*
#define INT16_TO_3_BYTE_BUFFER(x, buf) \
do { \
(buf)[0] = 0x00; \
(buf)[1] = (x) >> 8; \
(buf)[2] = (x); \
} while(0)
*/
#define NR_FIVEGS_TAC_ID_TO_BIT_STRING(x, aSN) \
do { \
(aSN)->buf = calloc(3, sizeof(uint8_t)); \
(aSN)->size = 3; \
(aSN)->buf[0] = 0x00; \
(aSN)->buf[1] = (x) >> 8; \
(aSN)->buf[2] = (x); \
} while(0)
/* TS 38.473 v15.2.1 section 9.3.1.55:
* MaskedIMEISV is BIT_STRING(64)
*/
#define MaskedIMEISV_TO_BIT_STRING(mACRO, bITsTRING) \
do { \
(bITsTRING)->buf = calloc(8, sizeof(uint8_t)); \
(bITsTRING)->buf[0] = (mACRO) >> 56 & 0xFF; \
(bITsTRING)->buf[1] = (mACRO) >> 48 & 0xFF; \
(bITsTRING)->buf[2] = (mACRO) >> 40 & 0xFF; \
(bITsTRING)->buf[3] = (mACRO) >> 32 & 0xFF; \
(bITsTRING)->buf[4] = (mACRO) >> 24 & 0xFF; \
(bITsTRING)->buf[5] = (mACRO) >> 16 & 0xFF; \
(bITsTRING)->buf[6] = (mACRO) >> 8 & 0xFF; \
(bITsTRING)->buf[7] = (mACRO) >> 4 & 0xFF; \
(bITsTRING)->size = 8; \
(bITsTRING)->bits_unused = 0; \
} while(0)
#define BIT_STRING_TO_MaskedIMEISV(bITsTRING, mACRO) \
do { \
DevCheck((bITsTRING)->size == 8, (bITsTRING)->size, 8, 0); \
DevCheck((bITsTRING)->bits_unused == 0, (bITsTRING)->bits_unused, 0, 0); \
mACRO = ((bITsTRING)->buf[0] << 56) + \
((bITsTRING)->buf[1] << 48) + \
((bITsTRING)->buf[2] << 40) + \
((bITsTRING)->buf[3] << 32) + \
((bITsTRING)->buf[4] << 24) + \
((bITsTRING)->buf[5] << 16) + \
((bITsTRING)->buf[6] << 8) + \
((bITsTRING)->buf[7]); \
} while (0)
/* TS 36.413 v10.9.0 section 9.2.1.37:
* Macro eNB ID:
* Equal to the 20 leftmost bits of the Cell
* Identity IE contained in the E-UTRAN CGI
* IE (see subclause 9.2.1.38) of each cell
* served by the eNB.
*/
#define MACRO_ENB_ID_TO_BIT_STRING(mACRO, bITsTRING) \
do { \
(bITsTRING)->buf = calloc(3, sizeof(uint8_t)); \
(bITsTRING)->buf[0] = ((mACRO) >> 12); \
(bITsTRING)->buf[1] = (mACRO) >> 4; \
(bITsTRING)->buf[2] = ((mACRO) & 0x0f) << 4; \
(bITsTRING)->size = 3; \
(bITsTRING)->bits_unused = 4; \
} while(0)
#define MACRO_GNB_ID_TO_BIT_STRING(mACRO, bITsTRING) \
do { \
(bITsTRING)->buf = calloc(4, sizeof(uint8_t)); \
(bITsTRING)->buf[0] = ((mACRO) >> 20); \
(bITsTRING)->buf[1] = (mACRO) >> 12; \
(bITsTRING)->buf[2] = (mACRO) >> 4; \
(bITsTRING)->buf[3] = ((mACRO) & 0x0f) << 4; \
(bITsTRING)->size = 4; \
(bITsTRING)->bits_unused = 4; \
} while(0)
/* TS 36.413 v10.9.0 section 9.2.1.38:
* E-UTRAN CGI/Cell Identity
* The leftmost bits of the Cell
* Identity correspond to the eNB
* ID (defined in subclause 9.2.1.37).
*/
#define MACRO_ENB_ID_TO_CELL_IDENTITY(mACRO, cELL_iD, bITsTRING) \
do { \
(bITsTRING)->buf = calloc(4, sizeof(uint8_t)); \
(bITsTRING)->buf[0] = ((mACRO) >> 12); \
(bITsTRING)->buf[1] = (mACRO) >> 4; \
(bITsTRING)->buf[2] = (((mACRO) & 0x0f) << 4) | ((cELL_iD) >> 4); \
(bITsTRING)->buf[3] = ((cELL_iD) & 0x0f) << 4; \
(bITsTRING)->size = 4; \
(bITsTRING)->bits_unused = 4; \
} while(0)
#define MACRO_GNB_ID_TO_CELL_IDENTITY(mACRO, cELL_iD, bITsTRING) \
do { \
(bITsTRING)->buf = calloc(5, sizeof(uint8_t)); \
(bITsTRING)->buf[0] = ((mACRO) >> 20); \
(bITsTRING)->buf[1] = (mACRO) >> 12; \
(bITsTRING)->buf[2] = (mACRO) >> 4; \
(bITsTRING)->buf[3] = (((mACRO) & 0x0f) << 4) | ((cELL_iD) >> 4); \
(bITsTRING)->buf[4] = ((cELL_iD) & 0x0f) << 4; \
(bITsTRING)->size = 5; \
(bITsTRING)->bits_unused = 4; \
} while(0)
#define UEIDENTITYINDEX_TO_BIT_STRING(mACRO, bITsTRING) \
do { \
(bITsTRING)->buf = calloc(2, sizeof(uint8_t)); \
(bITsTRING)->buf[0] = (mACRO) >> 2; \
(bITsTRING)->buf[1] = ((mACRO) & 0x03)<<6; \
(bITsTRING)->size = 2; \
(bITsTRING)->bits_unused = 6; \
} while(0)
#define FIVEG_S_TMSI_TO_BIT_STRING(mACRO, bITsTRING) \
do { \
(bITsTRING)->buf = calloc(6, sizeof(uint8_t)); \
(bITsTRING)->buf[0] = ((mACRO) >> 40) & 0xff; \
(bITsTRING)->buf[1] = ((mACRO) >> 32) & 0xff; \
(bITsTRING)->buf[2] = ((mACRO) >> 24) & 0xff; \
(bITsTRING)->buf[3] = ((mACRO) >> 16) & 0xff; \
(bITsTRING)->buf[4] = ((mACRO) >> 8 ) & 0xff; \
(bITsTRING)->buf[5] = ((mACRO) & 0xff); \
(bITsTRING)->size = 6; \
(bITsTRING)->bits_unused = 0; \
} while(0)
/* Used to format an uint32_t containing an ipv4 address */
#define IPV4_ADDR "%u.%u.%u.%u"
#define IPV4_ADDR_FORMAT(aDDRESS) \
(uint8_t)((aDDRESS) & 0x000000ff), \
(uint8_t)(((aDDRESS) & 0x0000ff00) >> 8 ), \
(uint8_t)(((aDDRESS) & 0x00ff0000) >> 16), \
(uint8_t)(((aDDRESS) & 0xff000000) >> 24)
#define IPV4_ADDR_DISPLAY_8(aDDRESS) \
(aDDRESS)[0], (aDDRESS)[1], (aDDRESS)[2], (aDDRESS)[3]
#define TAC_TO_ASN1 INT16_TO_OCTET_STRING
#define GTP_TEID_TO_ASN1 INT32_TO_OCTET_STRING
#define OCTET_STRING_TO_TAC OCTET_STRING_TO_INT16
#endif /* CONVERSIONS_H_ */