Skip to content
Snippets Groups Projects
conversions.h 25.1 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
 * the OAI Public License, Version 1.1  (the "License"); you may not use this file
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */

#include "assertions.h"

#ifndef CONVERSIONS_H_
#define CONVERSIONS_H_

/* Endianness conversions for 16 and 32 bits integers from host to network order */
#if (BYTE_ORDER == LITTLE_ENDIAN)
# define hton_int32(x)   \
    (((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) |  \
    ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24))

# define hton_int16(x)   \
    (((x & 0x00FF) << 8) | ((x & 0xFF00) >> 8)

# define ntoh_int32_buf(bUF)        \
    ((*(bUF)) << 24) | ((*((bUF) + 1)) << 16) | ((*((bUF) + 2)) << 8)   \
  | (*((bUF) + 3))
#else
# define hton_int32(x) (x)
# define hton_int16(x) (x)
#endif

#define IN_ADDR_TO_BUFFER(X,bUFF) INT32_TO_BUFFER((X).s_addr,(char*)bUFF)

#define IN6_ADDR_TO_BUFFER(X,bUFF)                     \
    do {                                               \
        ((uint8_t*)(bUFF))[0]  = (X).s6_addr[0];  \
        ((uint8_t*)(bUFF))[1]  = (X).s6_addr[1];  \
        ((uint8_t*)(bUFF))[2]  = (X).s6_addr[2];  \
        ((uint8_t*)(bUFF))[3]  = (X).s6_addr[3];  \
        ((uint8_t*)(bUFF))[4]  = (X).s6_addr[4];  \
        ((uint8_t*)(bUFF))[5]  = (X).s6_addr[5];  \
        ((uint8_t*)(bUFF))[6]  = (X).s6_addr[6];  \
        ((uint8_t*)(bUFF))[7]  = (X).s6_addr[7];  \
        ((uint8_t*)(bUFF))[8]  = (X).s6_addr[8];  \
        ((uint8_t*)(bUFF))[9]  = (X).s6_addr[9];  \
        ((uint8_t*)(bUFF))[10] = (X).s6_addr[10]; \
        ((uint8_t*)(bUFF))[11] = (X).s6_addr[11]; \
        ((uint8_t*)(bUFF))[12] = (X).s6_addr[12]; \
        ((uint8_t*)(bUFF))[13] = (X).s6_addr[13]; \
        ((uint8_t*)(bUFF))[14] = (X).s6_addr[14]; \
        ((uint8_t*)(bUFF))[15] = (X).s6_addr[15]; \
    } while(0)

#define BUFFER_TO_INT8(buf, x) (x = ((buf)[0]))

#define INT8_TO_BUFFER(x, buf) ((buf)[0] = (x))

/* Convert an integer on 16 bits to the given bUFFER */
#define INT16_TO_BUFFER(x, buf) \
do {                            \
    (buf)[0] = ((x) >> 8) & 0xff; \
    (buf)[1] = (x)      & 0xff; \
} while(0)

/* Convert an array of char containing vALUE to x */
#define BUFFER_TO_INT16(buf, x) \
do {                            \
    x = ((buf)[0] << 8)  |      \
        ((buf)[1]);             \
} while(0)

/* Convert an integer on 24 bits to the given bUFFER */
#define INT24_TO_BUFFER(x, buf) \
do {                            \
    (buf)[0] = ((x) >> 16) & 0xff;\
    (buf)[1] = ((x) >> 8) & 0xff; \
    (buf)[2] = (x)      & 0xff; \
} while(0)

/* Convert an array of char containing vALUE to x */
#define BUFFER_TO_INT24(buf, x) \
do {                            \
    x = ((buf)[0] << 16)  |     \
        ((buf)[1] << 8  )   |   \
        ((buf)[2]);             \
} while(0)


/* Convert an integer on 32 bits to the given bUFFER */
#define INT32_TO_BUFFER(x, buf) \
do {                            \
    (buf)[0] = ((x) >> 24) & 0xff;\
    (buf)[1] = ((x) >> 16) & 0xff;\
    (buf)[2] = ((x) >> 8) & 0xff; \
    (buf)[3] = (x)      & 0xff; \
} while(0)

/* Convert an array of char containing vALUE to x */
#define BUFFER_TO_INT32(buf, x) \
do {                            \
    x = ((buf)[0] << 24) |      \
        ((buf)[1] << 16) |      \
        ((buf)[2] << 8)  |      \
        ((buf)[3]);             \
} while(0)

/* Convert an array of char containing vALUE to x */
#define BUFFER_TO_UINT32(buf, x)    \
  do {                              \
 x =   (((uint32_t)((buf)[0])) << 24) |              \
       (((uint32_t)((buf)[1])) << 16) |      \
       (((uint32_t)((buf)[2])) << 8)  |      \
       (((uint32_t)((buf)[3])));        \
  } while (0)

/* Convert an integer on 32 bits to an octet string from aSN1c tool */
#define INT32_TO_OCTET_STRING(x, aSN)           \
do {                                            \
    (aSN)->buf = calloc(4, sizeof(uint8_t));    \
    INT32_TO_BUFFER(x, ((aSN)->buf));           \
    (aSN)->size = 4;                            \
} while(0)

#define INT32_TO_BIT_STRING(x, aSN) \
do {                                \
    INT32_TO_OCTET_STRING(x, aSN);  \
    (aSN)->bits_unused = 0;         \
} while(0)

#define INT16_TO_OCTET_STRING(x, aSN)           \
do {                                            \
    (aSN)->buf = calloc(2, sizeof(uint8_t));    \
    INT16_TO_BUFFER(x, ((aSN)->buf));           \
    (aSN)->size = 2;                            \
} while(0)

#define INT16_TO_BIT_STRING(x, aSN) \
do {                                \
    INT16_TO_OCTET_STRING(x, aSN);  \
    (aSN)->bits_unused = 0;         \
} while(0)


#define INT24_TO_OCTET_STRING(x, aSN)           \
do {                                            \
    (aSN)->buf = calloc(3, sizeof(uint8_t));    \
    INT24_TO_BUFFER(x, ((aSN)->buf));           \
    (aSN)->size = 3;                            \
} while(0)

#define INT24_TO_BIT_STRING(x, aSN) \
do {                                \
    INT24_TO_OCTET_STRING(x, aSN);  \
    (aSN)->bits_unused = 0;         \
} while(0)


#define INT8_TO_OCTET_STRING(x, aSN)            \
do {                                            \
    (aSN)->buf = calloc(1, sizeof(uint8_t));    \
    (aSN)->size = 1;                            \
    INT8_TO_BUFFER(x, (aSN)->buf);              \
} while(0)

#define MME_CODE_TO_OCTET_STRING INT8_TO_OCTET_STRING
#define M_TMSI_TO_OCTET_STRING   INT32_TO_OCTET_STRING
#define MME_GID_TO_OCTET_STRING  INT16_TO_OCTET_STRING

#define AMF_REGION_TO_BIT_STRING(x, aSN)      \
  do {                                        \
    INT8_TO_OCTET_STRING(x, aSN);             \
    (aSN)->bits_unused = 0;                   \
} while(0)

#define AMF_SETID_TO_BIT_STRING(x, aSN)       \
  do {                                        \
    INT16_TO_OCTET_STRING(x, aSN);            \
    (aSN)->bits_unused = 6;                   \
} while(0)

#define AMF_POINTER_TO_BIT_STRING(x, aSN)     \
  do {                                        \
    INT8_TO_OCTET_STRING(x, aSN);             \
    (aSN)->bits_unused = 2;                   \
} while(0)


#define ENCRALG_TO_BIT_STRING(encralg, bitstring)    \
    do {                        \
    (bitstring)->size=2;                \
    (bitstring)->bits_unused=0;            \
    (bitstring)->buf=calloc (2, sizeof (uint8_t));    \
    (bitstring)->buf[0] = (encralg) >> 8;         \
    (bitstring)->buf[1] = (encralg);        \
    }while(0)

#define INTPROTALG_TO_BIT_STRING(intprotalg, bitstring)    \
do {                                \
    (bitstring)->size=2;                    \
    (bitstring)->bits_unused=0;                \
    (bitstring)->buf=calloc (2, sizeof (uint8_t));        \
    (bitstring)->buf[0] = (intprotalg) >> 8;         \
    (bitstring)->buf[1] = (intprotalg);            \
}while(0)

#define KENB_STAR_TO_BIT_STRING(kenbstar, bitstring)    \
do {                            \
    (bitstring)->size=32;                \
    (bitstring)->bits_unused=0;            \
    (bitstring)->buf= calloc (32, sizeof (uint8_t));\
    memcpy((bitstring)->buf, kenbstar, 32*sizeof(uint8_t));            \
}while(0)

#define UEAGMAXBITRTD_TO_ASN_PRIMITIVES(uegmaxbitrtd, asnprimitives)        \
do {                                         \
    (asnprimitives)->size=5;                        \
    (asnprimitives)->buf=calloc (5, sizeof (uint8_t));            \
    (asnprimitives)->buf[0] = (uegmaxbitrtd) >> 32;                \
    (asnprimitives)->buf[1] = (uegmaxbitrtd) >> 24;                \
    (asnprimitives)->buf[2] = (uegmaxbitrtd) >> 16;                \
    (asnprimitives)->buf[3] = (uegmaxbitrtd) >> 8;                \
    (asnprimitives)->buf[4] = (uegmaxbitrtd);                \
 }while(0)

#define UEAGMAXBITRTU_TO_ASN_PRIMITIVES(uegmaxbitrtu, asnprimitives)        \
do {                                         \
    (asnprimitives)->size=5;                        \
    (asnprimitives)->buf=calloc (5, sizeof (uint8_t));            \
    (asnprimitives)->buf[0] = (uegmaxbitrtu) >> 32;                \
    (asnprimitives)->buf[1] = (uegmaxbitrtu) >> 24;                \
    (asnprimitives)->buf[2] = (uegmaxbitrtu) >> 16;                \
    (asnprimitives)->buf[3] = (uegmaxbitrtu) >> 8;                \
    (asnprimitives)->buf[4] = (uegmaxbitrtu);                \
 }while(0)

#define OCTET_STRING_TO_INT8(aSN, x)    \
do {                                    \
    DevCheck((aSN)->size == 1, (aSN)->size, 0, 0);           \
    BUFFER_TO_INT8((aSN)->buf, x);    \
} while(0)

#define OCTET_STRING_TO_INT16(aSN, x)   \
do {                                    \
    DevCheck((aSN)->size == 2 || (aSN)->size == 3, (aSN)->size, 0, 0);           \
    BUFFER_TO_INT16((aSN)->buf, x);    \
} while(0)

#define OCTET_STRING_TO_INT24(aSN, x)   \
do {                                    \
    DevCheck((aSN)->size == 2 || (aSN)->size == 3, (aSN)->size, 0, 0);           \
    BUFFER_TO_INT24((aSN)->buf, x);    \
} while(0)

#define OCTET_STRING_TO_INT32(aSN, x)   \
do {                                    \
    DevCheck((aSN)->size == 4, (aSN)->size, 0, 0);           \
    BUFFER_TO_INT32((aSN)->buf, x);    \
} while(0)

#define OCTET_STRING_TO_UINT32(aSN, x)             \
  do {                                             \
    DevCheck((aSN)->size == 4, (aSN)->size, 0, 0); \
    BUFFER_TO_UINT32((aSN)->buf, x);               \
  } while (0)

#define BIT_STRING_TO_INT32(aSN, x)     \
do {                                    \
    DevCheck((aSN)->bits_unused == 0, (aSN)->bits_unused, 0, 0);    \
    OCTET_STRING_TO_INT32(aSN, x);      \
} while(0)

#define BIT_STRING_TO_CELL_IDENTITY(aSN, vALUE)                     \
do {                                                                \
    DevCheck((aSN)->bits_unused == 4, (aSN)->bits_unused, 4, 0);    \
    vALUE = ((aSN)->buf[0] << 20) | ((aSN)->buf[1] << 12) |         \
        ((aSN)->buf[2] << 4) | (aSN)->buf[3];                       \
} while(0)

#define BIT_STRING_TO_NR_CELL_IDENTITY(aSN, vALUE)                     \
do {                                                                   \
    DevCheck((aSN)->bits_unused == 4, (aSN)->bits_unused, 4, 0);       \
    vALUE = ((aSN)->buf[0] << 28) | ((aSN)->buf[1] << 20) |            \
        ((aSN)->buf[2] << 12) | ((aSN)->buf[3]<<4) | ((aSN)->buf[4]>>4);  \
} while(0)

#define MCC_HUNDREDS(vALUE) \
    ((vALUE) / 100)
/* When MNC is only composed of 2 digits, set the hundreds unit to 0xf */
#define MNC_HUNDREDS(vALUE, mNCdIGITlENGTH) \
    ( mNCdIGITlENGTH == 2 ? 15 : (vALUE) / 100)
#define MCC_MNC_DECIMAL(vALUE) \
    (((vALUE) / 10) % 10)
#define MCC_MNC_DIGIT(vALUE) \
    ((vALUE) % 10)

#define MCC_TO_BUFFER(mCC, bUFFER)      \
do {                                    \
    DevAssert(bUFFER != NULL);          \
    (bUFFER)[0] = MCC_HUNDREDS(mCC);    \
    (bUFFER)[1] = MCC_MNC_DECIMAL(mCC); \
    (bUFFER)[2] = MCC_MNC_DIGIT(mCC);   \
} while(0)

#define MCC_MNC_TO_PLMNID(mCC, mNC, mNCdIGITlENGTH, oCTETsTRING)               \
do {                                                                           \
    (oCTETsTRING)->buf = calloc(3, sizeof(uint8_t));                           \
    (oCTETsTRING)->buf[0] = (MCC_MNC_DECIMAL(mCC) << 4) | MCC_HUNDREDS(mCC);   \
    (oCTETsTRING)->buf[1] = (MNC_HUNDREDS(mNC,mNCdIGITlENGTH) << 4) | MCC_MNC_DIGIT(mCC);     \
    (oCTETsTRING)->buf[2] = (MCC_MNC_DIGIT(mNC) << 4) | MCC_MNC_DECIMAL(mNC);  \
    (oCTETsTRING)->size = 3;                                                   \
} while(0)

#define PLMNID_TO_MCC_MNC(oCTETsTRING, mCC, mNC, mNCdIGITlENGTH)                  \
do {                                                                              \
    mCC = ((oCTETsTRING)->buf[0] & 0x0F) * 100 +                                  \
          ((oCTETsTRING)->buf[0] >> 4 & 0x0F) * 10 +                              \
          ((oCTETsTRING)->buf[1] & 0x0F);                                         \
    mNCdIGITlENGTH = ((oCTETsTRING)->buf[1] >> 4 & 0x0F) == 0xF ? 2 : 3;          \
    mNC = (mNCdIGITlENGTH == 2 ? 0 : ((oCTETsTRING)->buf[1] >> 4 & 0x0F) * 100) + \
          ((oCTETsTRING)->buf[2] & 0x0F) * 10 +                                   \
          ((oCTETsTRING)->buf[2] >> 4 & 0x0F);                                    \
} while (0)

#define MCC_MNC_TO_TBCD(mCC, mNC, mNCdIGITlENGTH, tBCDsTRING)        \
do {                                                                 \
    char _buf[3];                                                    \
     DevAssert((mNCdIGITlENGTH == 3) || (mNCdIGITlENGTH == 2));      \
    _buf[0] = (MCC_MNC_DECIMAL(mCC) << 4) | MCC_HUNDREDS(mCC);       \
    _buf[1] = (MNC_HUNDREDS(mNC,mNCdIGITlENGTH) << 4) | MCC_MNC_DIGIT(mCC);\
    _buf[2] = (MCC_MNC_DIGIT(mNC) << 4) | MCC_MNC_DECIMAL(mNC);      \
    OCTET_STRING_fromBuf(tBCDsTRING, _buf, 3);                       \
} while(0)

#define TBCD_TO_MCC_MNC(tBCDsTRING, mCC, mNC, mNCdIGITlENGTH)    \
do {                                                             \
    int mNC_hundred;                                             \
    DevAssert((tBCDsTRING)->size == 3);                          \
    mNC_hundred = (((tBCDsTRING)->buf[1] & 0xf0) >> 4);          \
    if (mNC_hundred == 0xf) {                                    \
        mNC_hundred = 0;                                         \
        mNCdIGITlENGTH = 2;                                      \
    } else {                                                     \
            mNCdIGITlENGTH = 3;                                  \
    }                                                            \
    mCC = (((((tBCDsTRING)->buf[0]) & 0xf0) >> 4) * 10) +        \
        ((((tBCDsTRING)->buf[0]) & 0x0f) * 100) +                \
        (((tBCDsTRING)->buf[1]) & 0x0f);                         \
    mNC = (mNC_hundred * 100) +                                  \
        ((((tBCDsTRING)->buf[2]) & 0xf0) >> 4) +                 \
        ((((tBCDsTRING)->buf[2]) & 0x0f) * 10);                  \
} while(0)

#define TBCD_TO_PLMN_T(tBCDsTRING, pLMN)                            \
do {                                                                \
    DevAssert((tBCDsTRING)->size == 3);                             \
    (pLMN)->MCCdigit2 = (((tBCDsTRING)->buf[0] & 0xf0) >> 4);       \
    (pLMN)->MCCdigit3 = ((tBCDsTRING)->buf[0] & 0x0f);              \
    (pLMN)->MCCdigit1 = (tBCDsTRING)->buf[1] & 0x0f;                \
    (pLMN)->MNCdigit3 = (((tBCDsTRING)->buf[1] & 0xf0) >> 4) == 0xF \
    ? 0 : (((tBCDsTRING)->buf[1] & 0xf0) >> 4);       \
    (pLMN)->MNCdigit2 = (((tBCDsTRING)->buf[2] & 0xf0) >> 4);       \
    (pLMN)->MNCdigit1 = ((tBCDsTRING)->buf[2] & 0x0f);              \
} while(0)

#define PLMN_T_TO_TBCD(pLMN, tBCDsTRING, mNClENGTH)                 \
do {                                                                \
    tBCDsTRING[0] = (pLMN.MCCdigit2 << 4) | pLMN.MCCdigit1;         \
    /* ambiguous (think about len 2) */                             \
    if (mNClENGTH == 2) {                                      \
        tBCDsTRING[1] = (0x0F << 4) | pLMN.MCCdigit3;               \
        tBCDsTRING[2] = (pLMN.MNCdigit2 << 4) | pLMN.MNCdigit1;     \
    } else {                                                        \
        tBCDsTRING[1] = (pLMN.MNCdigit3 << 4) | pLMN.MCCdigit3;     \
        tBCDsTRING[2] = (pLMN.MNCdigit2 << 4) | pLMN.MNCdigit1;     \
    }                                                               \
} while(0)

#define PLMN_T_TO_MCC_MNC(pLMN, mCC, mNC, mNCdIGITlENGTH)               \
do {                                                                    \
    mCC = pLMN.MCCdigit3 * 100 + pLMN.MCCdigit2 * 10 + pLMN.MCCdigit1;  \
    mNCdIGITlENGTH = (pLMN.MNCdigit3 == 0xF ? 2 : 3);                   \
    mNC = (mNCdIGITlENGTH == 2 ? 0 : pLMN.MNCdigit3 * 100)              \
          + pLMN.MNCdigit2 * 10 + pLMN.MNCdigit1;                       \
} while(0)


/* TS 38.473 v15.2.1 section 9.3.1.32:
 * C RNTI is BIT_STRING(16)
 */
#define C_RNTI_TO_BIT_STRING(mACRO, bITsTRING)          \
do {                                                    \
    (bITsTRING)->buf = calloc(2, sizeof(uint8_t));      \
    (bITsTRING)->buf[0] = (mACRO) >> 8;                 \
    (bITsTRING)->buf[1] = ((mACRO) & 0x0ff);            \
    (bITsTRING)->size = 2;                              \
    (bITsTRING)->bits_unused = 0;                       \
} while(0)


/* TS 38.473 v15.2.1 section 9.3.2.3:
 * TRANSPORT LAYER ADDRESS for IPv4 is 32bit (TS 38.414)
 */
#define TRANSPORT_LAYER_ADDRESS_IPv4_TO_BIT_STRING(mACRO, bITsTRING)    \
do {                                                    \
    (bITsTRING)->buf = calloc(4, sizeof(uint8_t));      \
    (bITsTRING)->buf[3] = (mACRO) >> 24 & 0xFF;         \
    (bITsTRING)->buf[2] = (mACRO) >> 16 & 0xFF;         \
    (bITsTRING)->buf[1] = (mACRO) >> 8 & 0xFF;          \
    (bITsTRING)->buf[0] = (mACRO) &  0xFF;              \
    (bITsTRING)->size = 4;                              \
    (bITsTRING)->bits_unused = 0;                       \
} while(0)

#define BIT_STRING_TO_TRANSPORT_LAYER_ADDRESS_IPv4(bITsTRING, mACRO)    \
do {                                                                    \
    DevCheck((bITsTRING)->size == 4, (bITsTRING)->size, 4, 0);          \
    DevCheck((bITsTRING)->bits_unused == 0, (bITsTRING)->bits_unused, 0, 0); \
    mACRO = ((bITsTRING)->buf[3] << 24) +                               \
            ((bITsTRING)->buf[2] << 16) +                               \
            ((bITsTRING)->buf[1] << 8) +                                \
            ((bITsTRING)->buf[0]);                                      \
} while (0)


/* TS 38.473 v15.1.1 section 9.3.1.12:
 * NR CELL ID
 */
#define NR_CELL_ID_TO_BIT_STRING(mACRO, bITsTRING)      \
do {                                                    \
    (bITsTRING)->buf = calloc(5, sizeof(uint8_t));      \
    (bITsTRING)->buf[0] = ((mACRO) >> 28) & 0xff;       \
    (bITsTRING)->buf[1] = ((mACRO) >> 20) & 0xff;       \
    (bITsTRING)->buf[2] = ((mACRO) >> 12) & 0xff;       \
    (bITsTRING)->buf[3] = ((mACRO) >> 4)  & 0xff;       \
    (bITsTRING)->buf[4] = ((mACRO) & 0x0f) << 4;        \
    (bITsTRING)->size = 5;                              \
    (bITsTRING)->bits_unused = 4;                       \
} while(0)

/*
#define INT16_TO_3_BYTE_BUFFER(x, buf) \
do {                            \
	(buf)[0] = 0x00; \
    (buf)[1] = (x) >> 8;        \
    (buf)[2] = (x);             \
} while(0)
*/

#define NR_FIVEGS_TAC_ID_TO_BIT_STRING(x, aSN)      \
do {                                                    \
    (aSN)->buf = calloc(3, sizeof(uint8_t));    \
    (aSN)->size = 3;              \
    (aSN)->buf[0] = 0x00;		  \
    (aSN)->buf[1] = (x) >> 8;        \
    (aSN)->buf[2] = (x);             \
} while(0)



/* TS 38.473 v15.2.1 section 9.3.1.55:
 * MaskedIMEISV is BIT_STRING(64)
 */
#define MaskedIMEISV_TO_BIT_STRING(mACRO, bITsTRING)    \
do {                                                    \
    (bITsTRING)->buf = calloc(8, sizeof(uint8_t));      \
    (bITsTRING)->buf[0] = (mACRO) >> 56 & 0xFF;         \
    (bITsTRING)->buf[1] = (mACRO) >> 48 & 0xFF;         \
    (bITsTRING)->buf[2] = (mACRO) >> 40 & 0xFF;         \
    (bITsTRING)->buf[3] = (mACRO) >> 32 & 0xFF;         \
    (bITsTRING)->buf[4] = (mACRO) >> 24 & 0xFF;         \
    (bITsTRING)->buf[5] = (mACRO) >> 16 & 0xFF;         \
    (bITsTRING)->buf[6] = (mACRO) >> 8 & 0xFF;          \
    (bITsTRING)->buf[7] = (mACRO) >> 4 & 0xFF;          \
    (bITsTRING)->size = 8;                              \
    (bITsTRING)->bits_unused = 0;                       \
} while(0)

#define BIT_STRING_TO_MaskedIMEISV(bITsTRING, mACRO)    \
do {                                                                    \
    DevCheck((bITsTRING)->size == 8, (bITsTRING)->size, 8, 0);          \
    DevCheck((bITsTRING)->bits_unused == 0, (bITsTRING)->bits_unused, 0, 0); \
    mACRO = ((bITsTRING)->buf[0] << 56) +                               \
            ((bITsTRING)->buf[1] << 48) +                               \
            ((bITsTRING)->buf[2] << 40) +                               \
            ((bITsTRING)->buf[3] << 32) +                               \
            ((bITsTRING)->buf[4] << 24) +                               \
            ((bITsTRING)->buf[5] << 16) +                               \
            ((bITsTRING)->buf[6] << 8) +                                \
            ((bITsTRING)->buf[7]);                                      \
} while (0)

/* TS 36.413 v10.9.0 section 9.2.1.37:
 * Macro eNB ID:
 * Equal to the 20 leftmost bits of the Cell
 * Identity IE contained in the E-UTRAN CGI
 * IE (see subclause 9.2.1.38) of each cell
 * served by the eNB.
 */
#define MACRO_ENB_ID_TO_BIT_STRING(mACRO, bITsTRING)    \
do {                                                    \
    (bITsTRING)->buf = calloc(3, sizeof(uint8_t));      \
    (bITsTRING)->buf[0] = ((mACRO) >> 12);              \
    (bITsTRING)->buf[1] = (mACRO) >> 4;                 \
    (bITsTRING)->buf[2] = ((mACRO) & 0x0f) << 4;        \
    (bITsTRING)->size = 3;                              \
    (bITsTRING)->bits_unused = 4;                       \
} while(0)


#define MACRO_GNB_ID_TO_BIT_STRING(mACRO, bITsTRING)    \
do {                                                    \
    (bITsTRING)->buf = calloc(4, sizeof(uint8_t));      \
    (bITsTRING)->buf[0] = ((mACRO) >> 20);              \
    (bITsTRING)->buf[1] = (mACRO) >> 12;                \
    (bITsTRING)->buf[2] = (mACRO) >> 4;                 \
    (bITsTRING)->buf[3] = ((mACRO) & 0x0f) << 4;        \
    (bITsTRING)->size = 4;                              \
    (bITsTRING)->bits_unused = 4;                       \
} while(0)

/* TS 36.413 v10.9.0 section 9.2.1.38:
 * E-UTRAN CGI/Cell Identity
 * The leftmost bits of the Cell
 * Identity correspond to the eNB
 * ID (defined in subclause 9.2.1.37).
 */
#define MACRO_ENB_ID_TO_CELL_IDENTITY(mACRO, cELL_iD, bITsTRING) \
do {                                                    \
    (bITsTRING)->buf = calloc(4, sizeof(uint8_t));      \
    (bITsTRING)->buf[0] = ((mACRO) >> 12);              \
    (bITsTRING)->buf[1] = (mACRO) >> 4;                 \
    (bITsTRING)->buf[2] = (((mACRO) & 0x0f) << 4) | ((cELL_iD) >> 4);        \
    (bITsTRING)->buf[3] = ((cELL_iD) & 0x0f) << 4;        \
    (bITsTRING)->size = 4;                              \
    (bITsTRING)->bits_unused = 4;                       \
} while(0)

#define MACRO_GNB_ID_TO_CELL_IDENTITY(mACRO, cELL_iD, bITsTRING) \
do {                                                    \
    (bITsTRING)->buf = calloc(5, sizeof(uint8_t));      \
    (bITsTRING)->buf[0] = ((mACRO) >> 20);              \
    (bITsTRING)->buf[1] = (mACRO) >> 12;                 \
    (bITsTRING)->buf[2] = (mACRO) >> 4;        \
    (bITsTRING)->buf[3] = (((mACRO) & 0x0f) << 4) | ((cELL_iD) >> 4);        \
    (bITsTRING)->buf[4] = ((cELL_iD) & 0x0f) << 4;        \
    (bITsTRING)->size = 5;                              \
    (bITsTRING)->bits_unused = 4;                       \
} while(0)

#define UEIDENTITYINDEX_TO_BIT_STRING(mACRO, bITsTRING)          \
do {                                                    \
    (bITsTRING)->buf = calloc(2, sizeof(uint8_t));      \
    (bITsTRING)->buf[0] = (mACRO) >> 2;                 \
    (bITsTRING)->buf[1] = ((mACRO) & 0x03)<<6;            \
    (bITsTRING)->size = 2;                              \
    (bITsTRING)->bits_unused = 6;                       \
} while(0)

#define FIVEG_S_TMSI_TO_BIT_STRING(mACRO, bITsTRING)      \
do {                                                    \
    (bITsTRING)->buf = calloc(6, sizeof(uint8_t));      \
    (bITsTRING)->buf[0] = ((mACRO) >> 40) & 0xff;       \
    (bITsTRING)->buf[1] = ((mACRO) >> 32) & 0xff;       \
    (bITsTRING)->buf[2] = ((mACRO) >> 24) & 0xff;       \
    (bITsTRING)->buf[3] = ((mACRO) >> 16) & 0xff;       \
    (bITsTRING)->buf[4] = ((mACRO) >> 8 ) & 0xff;       \
    (bITsTRING)->buf[5] = ((mACRO) & 0xff);             \
    (bITsTRING)->size = 6;                              \
    (bITsTRING)->bits_unused = 0;                       \
} while(0)

/* Used to format an uint32_t containing an ipv4 address */
#define IPV4_ADDR    "%u.%u.%u.%u"
#define IPV4_ADDR_FORMAT(aDDRESS)               \
    (uint8_t)((aDDRESS)  & 0x000000ff),         \
    (uint8_t)(((aDDRESS) & 0x0000ff00) >> 8 ),  \
    (uint8_t)(((aDDRESS) & 0x00ff0000) >> 16),  \
    (uint8_t)(((aDDRESS) & 0xff000000) >> 24)

#define IPV4_ADDR_DISPLAY_8(aDDRESS)            \
    (aDDRESS)[0], (aDDRESS)[1], (aDDRESS)[2], (aDDRESS)[3]

#define TAC_TO_ASN1 INT16_TO_OCTET_STRING
#define GTP_TEID_TO_ASN1 INT32_TO_OCTET_STRING
#define OCTET_STRING_TO_TAC OCTET_STRING_TO_INT16

#endif /* CONVERSIONS_H_ */