Skip to content
Snippets Groups Projects
mercosul.py 749 B
Newer Older
Carlos Vieira's avatar
Carlos Vieira committed
import numpy as np
import pandas as pd
import keras

img_rows, img_cols = 30, 20
num_classes = 36

def data_prep(raw):
    out_y = keras.utils.to_categorical(raw.label, num_classes)

    num_images = raw.shape[0]
    x_as_array = raw.values[:,1:]
    x_shaped_array = x_as_array.reshape(num_images, img_rows, img_cols, 1)
    out_x = x_shaped_array / 255
Carlos Vieira's avatar
Carlos Vieira committed
    return out_x[:,:,:,0], out_y
Carlos Vieira's avatar
Carlos Vieira committed

def load_data():

    df = pd.read_csv("data/Mercosul_56_30x20.csv")
    df = df.sample(frac=1, random_state=10)
    x, y = data_prep(df)

    train_samples = int(y.shape[0] * 0.75)
    x_train, x_test = x[:train_samples, :], x[train_samples:, :]
    y_train, y_test = y[:train_samples, :], y[train_samples:, :]
    return (x_train, y_train), (x_test, y_test)