/* * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The OpenAirInterface Software Alliance licenses this file to You under * the OAI Public License, Version 1.1 (the "License"); you may not use this file * except in compliance with the License. * You may obtain a copy of the License at * * http://www.openairinterface.org/?page_id=698 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *------------------------------------------------------------------------------- * For more information about the OpenAirInterface (OAI) Software Alliance: * contact@openairinterface.org */ #define _GNU_SOURCE /* See feature_test_macros(7) */ #include <sched.h> #include "T.h" #undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all #include <common/utils/assertions.h> #include "PHY/types.h" #include "common/ran_context.h" #include "PHY/defs_gNB.h" #include "PHY/defs_common.h" #include "common/config/config_userapi.h" #include "common/utils/load_module_shlib.h" #undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all //#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all #include "sdr/COMMON/common_lib.h" #include "sdr/ETHERNET/USERSPACE/LIB/if_defs.h" //#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all #include "PHY/phy_vars.h" #include "SCHED/sched_common_vars.h" #include "LAYER2/MAC/mac_vars.h" #include "RRC/LTE/rrc_vars.h" #include "PHY_INTERFACE/phy_interface_vars.h" #include "gnb_config.h" #include "SIMULATION/TOOLS/sim.h" #include <targets/RT/USER/lte-softmodem.h> #ifdef SMBV #include "PHY/TOOLS/smbv.h" unsigned short config_frames[4] = {2,9,11,13}; #endif #include "common/utils/LOG/log.h" #include "common/utils/LOG/vcd_signal_dumper.h" #include "UTIL/OPT/opt.h" #include "intertask_interface.h" #include "PHY/INIT/phy_init.h" #include "system.h" #include <openair2/GNB_APP/gnb_app.h> #include "PHY/TOOLS/phy_scope_interface.h" #include "PHY/TOOLS/nr_phy_scope.h" #include "stats.h" #include "nr-softmodem.h" #include "executables/softmodem-common.h" #include "executables/thread-common.h" #include "NB_IoT_interface.h" #include "x2ap_eNB.h" #include "ngap_gNB.h" #include "gnb_paramdef.h" #include <openair3/ocp-gtpu/gtp_itf.h> #include "nfapi/oai_integration/vendor_ext.h" ////////////////////////////////// //// E2 Agent headers ////////////////////////////////// #include "agent_if/read/sm_ag_if_rd.h" #include "agent_if/sm_io.h" #include "agent_if/e2_agent_api.h" #include "openair2/LAYER2/nr_rlc/nr_rlc_entity.h" #include "openair2/LAYER2/nr_pdcp/nr_pdcp_entity.h" #include "openair2/LAYER2/nr_rlc/nr_rlc_oai_api.h" #include "openair2/LAYER2/nr_pdcp/nr_pdcp.h" #include "openair2/LAYER2/NR_MAC_gNB/nr_mac_gNB.h" #include "openair2/LAYER2/NR_MAC_gNB/mac_proto.h" #include "openair2/RRC/NR/rrc_gNB_UE_context.h" #include <time.h> ////////////////////////////////// ////////////////////////////////// ////////////////////////////////// pthread_cond_t nfapi_sync_cond; pthread_mutex_t nfapi_sync_mutex; int nfapi_sync_var=-1; //!< protected by mutex \ref nfapi_sync_mutex extern uint8_t nfapi_mode; // Default to monolithic mode THREAD_STRUCT thread_struct; pthread_cond_t sync_cond; pthread_mutex_t sync_mutex; int sync_var=-1; //!< protected by mutex \ref sync_mutex. int config_sync_var=-1; volatile int start_gNB = 0; int oai_exit = 0; static int wait_for_sync = 0; unsigned int mmapped_dma=0; int single_thread_flag=1; int8_t threequarter_fs=0; uint64_t downlink_frequency[MAX_NUM_CCs][4]; int32_t uplink_frequency_offset[MAX_NUM_CCs][4]; //Temp fix for inexistent NR upper layer unsigned char NB_gNB_INST = 1; char *uecap_file; runmode_t mode = normal_txrx; static double snr_dB=20; #if MAX_NUM_CCs == 1 rx_gain_t rx_gain_mode[MAX_NUM_CCs][4] = {{max_gain,max_gain,max_gain,max_gain}}; double tx_gain[MAX_NUM_CCs][4] = {{20,0,0,0}}; double rx_gain[MAX_NUM_CCs][4] = {{110,0,0,0}}; #else rx_gain_t rx_gain_mode[MAX_NUM_CCs][4] = {{max_gain,max_gain,max_gain,max_gain},{max_gain,max_gain,max_gain,max_gain}}; double tx_gain[MAX_NUM_CCs][4] = {{20,0,0,0},{20,0,0,0}}; double rx_gain[MAX_NUM_CCs][4] = {{110,0,0,0},{20,0,0,0}}; #endif double rx_gain_off = 0.0; static int tx_max_power[MAX_NUM_CCs]; /* = {0,0}*/; int chain_offset=0; uint8_t dci_Format = 0; uint8_t agregation_Level =0xFF; uint8_t nb_antenna_tx = 1; uint8_t nb_antenna_rx = 1; char ref[128] = "internal"; char channels[128] = "0"; int rx_input_level_dBm; int otg_enabled; //int number_of_cards = 1; //static NR_DL_FRAME_PARMS *frame_parms[MAX_NUM_CCs]; //static nfapi_nr_config_request_t *config[MAX_NUM_CCs]; uint32_t timing_advance = 0; uint64_t num_missed_slots=0; // counter for the number of missed slots #include <executables/split_headers.h> #include <SIMULATION/ETH_TRANSPORT/proto.h> int split73=0; void sendFs6Ul(PHY_VARS_eNB *eNB, int UE_id, int harq_pid, int segmentID, int16_t *data, int dataLen, int r_offset) { AssertFatal(false, "Must not be called in this context\n"); } void sendFs6Ulharq(enum pckType type, int UEid, PHY_VARS_eNB *eNB, LTE_eNB_UCI *uci, int frame, int subframe, uint8_t *harq_ack, uint8_t tdd_mapping_mode, uint16_t tdd_multiplexing_mask, uint16_t rnti, int32_t stat) { AssertFatal(false, "Must not be called in this context\n"); } extern void reset_opp_meas(void); extern void print_opp_meas(void); extern void *udp_eNB_task(void *args_p); int transmission_mode=1; int emulate_rf = 0; int numerology = 0; static char *parallel_config = NULL; static char *worker_config = NULL; /* struct for ethernet specific parameters given in eNB conf file */ eth_params_t *eth_params; openair0_config_t openair0_cfg[MAX_CARDS]; double cpuf; /* see file openair2/LAYER2/MAC/main.c for why abstraction_flag is needed * this is very hackish - find a proper solution */ uint8_t abstraction_flag=0; /* forward declarations */ void set_default_frame_parms(nfapi_nr_config_request_scf_t *config[MAX_NUM_CCs], NR_DL_FRAME_PARMS *frame_parms[MAX_NUM_CCs]); /*---------------------BMC: timespec helpers -----------------------------*/ struct timespec min_diff_time = { .tv_sec = 0, .tv_nsec = 0 }; struct timespec max_diff_time = { .tv_sec = 0, .tv_nsec = 0 }; struct timespec clock_difftime(struct timespec start, struct timespec end) { struct timespec temp; if ((end.tv_nsec-start.tv_nsec)<0) { temp.tv_sec = end.tv_sec-start.tv_sec-1; temp.tv_nsec = 1000000000+end.tv_nsec-start.tv_nsec; } else { temp.tv_sec = end.tv_sec-start.tv_sec; temp.tv_nsec = end.tv_nsec-start.tv_nsec; } return temp; } void print_difftimes(void) { #ifdef DEBUG printf("difftimes min = %lu ns ; max = %lu ns\n", min_diff_time.tv_nsec, max_diff_time.tv_nsec); #else LOG_I(HW,"difftimes min = %lu ns ; max = %lu ns\n", min_diff_time.tv_nsec, max_diff_time.tv_nsec); #endif } void update_difftimes(struct timespec start, struct timespec end) { struct timespec diff_time = { .tv_sec = 0, .tv_nsec = 0 }; int changed = 0; diff_time = clock_difftime(start, end); if ((min_diff_time.tv_nsec == 0) || (diff_time.tv_nsec < min_diff_time.tv_nsec)) { min_diff_time.tv_nsec = diff_time.tv_nsec; changed = 1; } if ((max_diff_time.tv_nsec == 0) || (diff_time.tv_nsec > max_diff_time.tv_nsec)) { max_diff_time.tv_nsec = diff_time.tv_nsec; changed = 1; } #if 1 if (changed) print_difftimes(); #endif } /*------------------------------------------------------------------------*/ unsigned int build_rflocal(int txi, int txq, int rxi, int rxq) { return (txi + (txq<<6) + (rxi<<12) + (rxq<<18)); } unsigned int build_rfdc(int dcoff_i_rxfe, int dcoff_q_rxfe) { return (dcoff_i_rxfe + (dcoff_q_rxfe<<8)); } #define KNRM "\x1B[0m" #define KRED "\x1B[31m" #define KGRN "\x1B[32m" #define KBLU "\x1B[34m" #define RESET "\033[0m" void exit_function(const char *file, const char *function, const int line, const char *s) { int ru_id; if (s != NULL) { printf("%s:%d %s() Exiting OAI softmodem: %s\n",file,line, function, s); } oai_exit = 1; if (RC.ru == NULL) exit(-1); // likely init not completed, prevent crash or hang, exit now... for (ru_id=0; ru_id<RC.nb_RU; ru_id++) { if (RC.ru[ru_id] && RC.ru[ru_id]->rfdevice.trx_end_func) { RC.ru[ru_id]->rfdevice.trx_end_func(&RC.ru[ru_id]->rfdevice); RC.ru[ru_id]->rfdevice.trx_end_func = NULL; } if (RC.ru[ru_id] && RC.ru[ru_id]->ifdevice.trx_end_func) { RC.ru[ru_id]->ifdevice.trx_end_func(&RC.ru[ru_id]->ifdevice); RC.ru[ru_id]->ifdevice.trx_end_func = NULL; } } sleep(1); //allow lte-softmodem threads to exit first exit(1); } int create_gNB_tasks(uint32_t gnb_nb) { LOG_D(GNB_APP, "%s(gnb_nb:%d)\n", __FUNCTION__, gnb_nb); itti_wait_ready(1); if (gnb_nb > 0) { /* Last task to create, others task must be ready before its start */ /*if (itti_create_task (TASK_GNB_APP, gNB_app_task, NULL) < 0) { LOG_E(GNB_APP, "Create task for gNB APP failed\n"); return -1; }*/ if(itti_create_task(TASK_SCTP, sctp_eNB_task, NULL) < 0) { LOG_E(SCTP, "Create task for SCTP failed\n"); return -1; } if (is_x2ap_enabled()) { if(itti_create_task(TASK_X2AP, x2ap_task, NULL) < 0) { LOG_E(X2AP, "Create task for X2AP failed\n"); } } else { LOG_I(X2AP, "X2AP is disabled.\n"); } } if (get_softmodem_params()->sa) { char* gnb_ipv4_address_for_NGU = NULL; uint32_t gnb_port_for_NGU = 0; char* gnb_ipv4_address_for_S1U = NULL; uint32_t gnb_port_for_S1U = 0; paramdef_t NETParams[] = GNBNETPARAMS_DESC; char aprefix[MAX_OPTNAME_SIZE*2 + 8]; sprintf(aprefix,"%s.[%i].%s",GNB_CONFIG_STRING_GNB_LIST,0,GNB_CONFIG_STRING_NETWORK_INTERFACES_CONFIG); config_get( NETParams,sizeof(NETParams)/sizeof(paramdef_t),aprefix); for(int i = GNB_INTERFACE_NAME_FOR_NG_AMF_IDX; i <= GNB_IPV4_ADDRESS_FOR_NG_AMF_IDX; i++) { if( NETParams[i].strptr == NULL) { LOG_E(NGAP, "No AMF configuration in the file.\n"); } else { LOG_D(NGAP, "Configuration in the file: %s.\n",*NETParams[i].strptr); } } if (gnb_nb > 0) { if (itti_create_task (TASK_NGAP, ngap_gNB_task, NULL) < 0) { LOG_E(NGAP, "Create task for NGAP failed\n"); return -1; } } } if (gnb_nb > 0) { if (itti_create_task (TASK_GNB_APP, gNB_app_task, NULL) < 0) { LOG_E(GNB_APP, "Create task for gNB APP failed\n"); return -1; } LOG_I(NR_RRC,"Creating NR RRC gNB Task\n"); if (itti_create_task (TASK_RRC_GNB, rrc_gnb_task, NULL) < 0) { LOG_E(NR_RRC, "Create task for NR RRC gNB failed\n"); return -1; } //Use check on x2ap to consider the NSA scenario and check for SA scenario if(is_x2ap_enabled() || get_softmodem_params()->sa) { if (itti_create_task (TASK_GTPV1_U, >pv1uTask, NULL) < 0) { LOG_E(GTPU, "Create task for GTPV1U failed\n"); return -1; } } } return 0; } static void get_options(void) { paramdef_t cmdline_params[] = CMDLINE_PARAMS_DESC_GNB ; CONFIG_SETRTFLAG(CONFIG_NOEXITONHELP); get_common_options(SOFTMODEM_GNB_BIT ); config_process_cmdline( cmdline_params,sizeof(cmdline_params)/sizeof(paramdef_t),NULL); CONFIG_CLEARRTFLAG(CONFIG_NOEXITONHELP); if ( !(CONFIG_ISFLAGSET(CONFIG_ABORT)) ) { memset((void *)&RC,0,sizeof(RC)); /* Read RC configuration file */ NRRCConfig(); NB_gNB_INST = RC.nb_nr_inst; NB_RU = RC.nb_RU; printf("Configuration: nb_rrc_inst %d, nb_nr_L1_inst %d, nb_ru %hhu\n",NB_gNB_INST,RC.nb_nr_L1_inst,NB_RU); } if(parallel_config != NULL) set_parallel_conf(parallel_config); if(worker_config != NULL) set_worker_conf(worker_config); } void set_default_frame_parms(nfapi_nr_config_request_scf_t *config[MAX_NUM_CCs], NR_DL_FRAME_PARMS *frame_parms[MAX_NUM_CCs]) { for (int CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) { frame_parms[CC_id] = (NR_DL_FRAME_PARMS *) malloc(sizeof(NR_DL_FRAME_PARMS)); config[CC_id] = (nfapi_nr_config_request_scf_t *) malloc(sizeof(nfapi_nr_config_request_scf_t)); config[CC_id]->ssb_config.scs_common.value = 1; config[CC_id]->cell_config.frame_duplex_type.value = 1; //FDD //config[CC_id]->subframe_config.dl_cyclic_prefix_type.value = 0; //NORMAL config[CC_id]->carrier_config.dl_grid_size[1].value = 106; config[CC_id]->carrier_config.ul_grid_size[1].value = 106; config[CC_id]->cell_config.phy_cell_id.value = 0; ///dl frequency to be filled in /* //Set some default values that may be overwritten while reading options frame_parms[CC_id]->frame_type = FDD; frame_parms[CC_id]->tdd_config = 3; frame_parms[CC_id]->tdd_config_S = 0; frame_parms[CC_id]->N_RB_DL = 100; frame_parms[CC_id]->N_RB_UL = 100; frame_parms[CC_id]->Ncp = NORMAL; frame_parms[CC_id]->Ncp_UL = NORMAL; frame_parms[CC_id]->Nid_cell = 0; frame_parms[CC_id]->num_MBSFN_config = 0; frame_parms[CC_id]->nb_antenna_ports_gNB = 1; frame_parms[CC_id]->nb_antennas_tx = 1; frame_parms[CC_id]->nb_antennas_rx = 1; frame_parms[CC_id]->nushift = 0; frame_parms[CC_id]->phich_config_common.phich_resource = oneSixth; frame_parms[CC_id]->phich_config_common.phich_duration = normal; // UL RS Config frame_parms[CC_id]->pusch_config_common.ul_ReferenceSignalsPUSCH.cyclicShift = 0;//n_DMRS1 set to 0 frame_parms[CC_id]->pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled = 0; frame_parms[CC_id]->pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled = 0; frame_parms[CC_id]->pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH = 0; frame_parms[CC_id]->prach_config_common.rootSequenceIndex=22; frame_parms[CC_id]->prach_config_common.prach_ConfigInfo.zeroCorrelationZoneConfig=1; frame_parms[CC_id]->prach_config_common.prach_ConfigInfo.prach_ConfigIndex=0; frame_parms[CC_id]->prach_config_common.prach_ConfigInfo.highSpeedFlag=0; frame_parms[CC_id]->prach_config_common.prach_ConfigInfo.prach_FreqOffset=0; // downlink_frequency[CC_id][0] = 2680000000; // Use float to avoid issue with frequency over 2^31. // downlink_frequency[CC_id][1] = downlink_frequency[CC_id][0]; // downlink_frequency[CC_id][2] = downlink_frequency[CC_id][0]; // downlink_frequency[CC_id][3] = downlink_frequency[CC_id][0]; //printf("Downlink for CC_id %d frequency set to %u\n", CC_id, downlink_frequency[CC_id][0]); frame_parms[CC_id]->dl_CarrierFreq=downlink_frequency[CC_id][0]; */ } } void wait_RUs(void) { LOG_I(PHY,"Waiting for RUs to be configured ... RC.ru_mask:%02lx\n", RC.ru_mask); // wait for all RUs to be configured over fronthaul pthread_mutex_lock(&RC.ru_mutex); while (RC.ru_mask>0) { pthread_cond_wait(&RC.ru_cond,&RC.ru_mutex); printf("RC.ru_mask:%02lx\n", RC.ru_mask); } pthread_mutex_unlock(&RC.ru_mutex); LOG_I(PHY,"RUs configured\n"); } void wait_gNBs(void) { int i; int waiting=1; while (waiting==1) { printf("Waiting for gNB L1 instances to all get configured ... sleeping 50ms (nb_nr_sL1_inst %d)\n",RC.nb_nr_L1_inst); usleep(50*1000); waiting=0; for (i=0; i<RC.nb_nr_L1_inst; i++) { if (RC.gNB[i]->configured==0) { waiting=1; break; } } } printf("gNB L1 are configured\n"); } /* * helper function to terminate a certain ITTI task */ void terminate_task(task_id_t task_id, module_id_t mod_id) { LOG_I(GNB_APP, "sending TERMINATE_MESSAGE to task %s (%d)\n", itti_get_task_name(task_id), task_id); MessageDef *msg; msg = itti_alloc_new_message (ENB_APP, 0, TERMINATE_MESSAGE); itti_send_msg_to_task (task_id, ENB_MODULE_ID_TO_INSTANCE(mod_id), msg); } //extern void free_transport(PHY_VARS_gNB *); extern void nr_phy_free_RU(RU_t *); int stop_L1L2(module_id_t gnb_id) { LOG_W(GNB_APP, "stopping nr-softmodem\n"); oai_exit = 1; if (!RC.ru) { LOG_F(GNB_APP, "no RU configured\n"); return -1; } /* stop trx devices, multiple carrier currently not supported by RU */ if (RC.ru[gnb_id]) { if (RC.ru[gnb_id]->rfdevice.trx_stop_func) { RC.ru[gnb_id]->rfdevice.trx_stop_func(&RC.ru[gnb_id]->rfdevice); LOG_I(GNB_APP, "turned off RU rfdevice\n"); } else { LOG_W(GNB_APP, "can not turn off rfdevice due to missing trx_stop_func callback, proceeding anyway!\n"); } if (RC.ru[gnb_id]->ifdevice.trx_stop_func) { RC.ru[gnb_id]->ifdevice.trx_stop_func(&RC.ru[gnb_id]->ifdevice); LOG_I(GNB_APP, "turned off RU ifdevice\n"); } else { LOG_W(GNB_APP, "can not turn off ifdevice due to missing trx_stop_func callback, proceeding anyway!\n"); } } else { LOG_W(GNB_APP, "no RU found for index %d\n", gnb_id); return -1; } /* these tasks need to pick up new configuration */ terminate_task(TASK_RRC_ENB, gnb_id); LOG_I(GNB_APP, "calling kill_gNB_proc() for instance %d\n", gnb_id); kill_gNB_proc(gnb_id); LOG_I(GNB_APP, "calling kill_NR_RU_proc() for instance %d\n", gnb_id); kill_NR_RU_proc(gnb_id); oai_exit = 0; //free_transport(RC.gNB[gnb_id]); phy_free_nr_gNB(RC.gNB[gnb_id]); nr_phy_free_RU(RC.ru[gnb_id]); free_lte_top(); return 0; } /* * Restart the nr-softmodem after it has been soft-stopped with stop_L1L2() */ int restart_L1L2(module_id_t gnb_id) { RU_t *ru = RC.ru[gnb_id]; MessageDef *msg_p = NULL; LOG_W(GNB_APP, "restarting nr-softmodem\n"); /* block threads */ sync_var = -1; RC.gNB[gnb_id]->configured = 0; RC.ru_mask |= (1 << ru->idx); set_function_spec_param(RC.ru[gnb_id]); LOG_I(GNB_APP, "attempting to create ITTI tasks\n"); // No more rrc thread, as many race conditions are hidden behind rrc_enb_init(); itti_mark_task_ready(TASK_RRC_ENB); /* pass a reconfiguration request which will configure everything down to * RC.eNB[i][j]->frame_parms, too */ msg_p = itti_alloc_new_message(TASK_ENB_APP, 0, RRC_CONFIGURATION_REQ); RRC_CONFIGURATION_REQ(msg_p) = RC.rrc[gnb_id]->configuration; itti_send_msg_to_task(TASK_RRC_ENB, ENB_MODULE_ID_TO_INSTANCE(gnb_id), msg_p); /* TODO XForms might need to be restarted, but it is currently (09/02/18) * broken, so we cannot test it */ wait_gNBs(); init_RU_proc(ru); ru->rf_map.card = 0; ru->rf_map.chain = 0; /* CC_id + chain_offset;*/ wait_RUs(); init_eNB_afterRU(); printf("Sending sync to all threads\n"); pthread_mutex_lock(&sync_mutex); sync_var=0; pthread_cond_broadcast(&sync_cond); pthread_mutex_unlock(&sync_mutex); return 0; } static void wait_nfapi_init(char *thread_name) { printf( "waiting for NFAPI PNF connection and population of global structure (%s)\n",thread_name); pthread_mutex_lock( &nfapi_sync_mutex ); while (nfapi_sync_var<0) pthread_cond_wait( &nfapi_sync_cond, &nfapi_sync_mutex ); pthread_mutex_unlock(&nfapi_sync_mutex); printf( "NFAPI: got sync (%s)\n", thread_name); } void init_pdcp(void) { uint32_t pdcp_initmask = (IS_SOFTMODEM_NOS1) ? PDCP_USE_NETLINK_BIT | LINK_ENB_PDCP_TO_IP_DRIVER_BIT | ENB_NAS_USE_TUN_BIT | SOFTMODEM_NOKRNMOD_BIT: LINK_ENB_PDCP_TO_GTPV1U_BIT; if (!get_softmodem_params()->nsa) { if (!NODE_IS_DU(RC.nrrrc[0]->node_type)) { pdcp_layer_init(); nr_pdcp_module_init(pdcp_initmask, 0); } } else { pdcp_layer_init(); nr_pdcp_module_init(pdcp_initmask, 0); } } static const int mod_id = 0; static int64_t time_now_us(void) { struct timespec tms; /* The C11 way */ /* if (! timespec_get(&tms, TIME_UTC)) */ /* POSIX.1-2008 way */ if (clock_gettime(CLOCK_REALTIME,&tms)) { return -1; } /* seconds, multiplied with 1 million */ int64_t micros = tms.tv_sec * 1000000; /* Add full microseconds */ micros += tms.tv_nsec/1000; /* round up if necessary */ if (tms.tv_nsec % 1000 >= 500) { ++micros; } return micros; } static void read_mac_sm(mac_ind_msg_t* data) { assert(data != NULL); data->tstamp = time_now_us(); // assert(0!=0 && "Read MAC called"); NR_UEs_t *UE_info = &RC.nrmac[mod_id]->UE_info; size_t num_ues = 0; UE_iterator(UE_info->list, ue) { if (ue) num_ues += 1; } data->len_ue_stats = num_ues; if(data->len_ue_stats > 0){ data->ue_stats = calloc(data->len_ue_stats, sizeof(mac_ue_stats_impl_t)); assert( data->ue_stats != NULL && "Memory exhausted" ); } size_t i = 0; //TODO UE_iterator(UE_info->list, UE) { const NR_UE_sched_ctrl_t* sched_ctrl = &UE->UE_sched_ctrl; mac_ue_stats_impl_t* rd = &data->ue_stats[i]; rd->frame = RC.nrmac[mod_id]->frame; rd->slot = RC.nrmac[mod_id]->slot; rd->dl_aggr_tbs = UE->mac_stats.dl.total_bytes; rd->ul_aggr_tbs = UE->mac_stats.ul.total_bytes; if (is_xlsch_in_slot(RC.nrmac[mod_id]->dlsch_slot_bitmap[rd->slot / 64], rd->slot)) { rd->dl_curr_tbs = UE->mac_stats.dl.current_bytes; rd->dl_sched_rb = UE->mac_stats.dl.current_rbs; } if (is_xlsch_in_slot(RC.nrmac[mod_id]->ulsch_slot_bitmap[rd->slot / 64], rd->slot)) { rd->ul_curr_tbs = UE->mac_stats.ul.current_bytes; rd->ul_sched_rb = sched_ctrl->sched_pusch.rbSize; } rd->rnti = UE->rnti; rd->dl_aggr_prb = UE->mac_stats.dl.total_rbs; rd->ul_aggr_prb = UE->mac_stats.ul.total_rbs; rd->dl_aggr_retx_prb = UE->mac_stats.dl.total_rbs_retx; rd->ul_aggr_retx_prb = UE->mac_stats.ul.total_rbs_retx; rd->dl_aggr_bytes_sdus = UE->mac_stats.dl.lc_bytes[3]; rd->ul_aggr_bytes_sdus = UE->mac_stats.ul.lc_bytes[3]; rd->dl_aggr_sdus = UE->mac_stats.dl.num_mac_sdu; rd->ul_aggr_sdus = UE->mac_stats.ul.num_mac_sdu; rd->pusch_snr = (float) sched_ctrl->pusch_snrx10 / 10; //: float = -64; rd->pucch_snr = (float) sched_ctrl->pucch_snrx10 / 10; //: float = -64; rd->wb_cqi = sched_ctrl->CSI_report.cri_ri_li_pmi_cqi_report.wb_cqi_1tb; rd->dl_mcs1 = sched_ctrl->dl_bler_stats.mcs; rd->dl_bler = sched_ctrl->dl_bler_stats.bler; rd->ul_mcs1 = sched_ctrl->ul_bler_stats.mcs; rd->ul_bler = sched_ctrl->ul_bler_stats.bler; rd->dl_mcs2 = 0; rd->ul_mcs2 = 0; rd->phr = sched_ctrl->ph; const uint32_t bufferSize = sched_ctrl->estimated_ul_buffer - sched_ctrl->sched_ul_bytes; rd->bsr = bufferSize; const size_t numDLHarq = 4; rd->dl_num_harq = numDLHarq; for (uint8_t j = 0; j < numDLHarq; ++j) rd->dl_harq[j] = UE->mac_stats.dl.rounds[j]; rd->dl_harq[numDLHarq] = UE->mac_stats.dl.errors; const size_t numUlHarq = 4; rd->ul_num_harq = numUlHarq; for (uint8_t j = 0; j < numUlHarq; ++j) rd->ul_harq[j] = UE->mac_stats.ul.rounds[j]; rd->ul_harq[numUlHarq] = UE->mac_stats.ul.errors; ++i; } } static uint32_t num_act_rb(NR_UEs_t* UE_info) { assert(UE_info!= NULL); uint32_t act_rb = 0; UE_iterator(UE_info->list, UE) { uint16_t const rnti = UE->rnti; for(int rb_id = 1; rb_id < 6; ++rb_id ){ nr_rlc_statistics_t rlc = {0}; const int srb_flag = 0; const bool rc = nr_rlc_get_statistics(rnti, srb_flag, rb_id, &rlc); if(rc) ++act_rb; } } return act_rb; } static void read_rlc_sm(rlc_ind_msg_t* data) { assert(data != NULL); // use MAC structures to get RNTIs NR_UEs_t *UE_info = &RC.nrmac[mod_id]->UE_info; uint32_t const act_rb = num_act_rb(UE_info); //assert(0!=0 && "Read RLC called"); data->len = act_rb; if(data->len > 0){ data->rb = calloc(data->len, sizeof(rlc_radio_bearer_stats_t)); assert(data->rb != NULL && "Memory exhausted"); } data->tstamp = time_now_us(); uint32_t i = 0; UE_iterator(UE_info->list, UE) { uint16_t const rnti = UE->rnti; //for every LC ID for(int rb_id = 1; rb_id < 6; ++rb_id ){ // activate the rlc to calculate the average tx time nr_rlc_activate_avg_time_to_tx(rnti, rb_id, 1); nr_rlc_statistics_t rb_rlc = {0}; const int srb_flag = 0; const bool rc = nr_rlc_get_statistics(rnti, srb_flag, rb_id, &rb_rlc); if(!rc) continue; rlc_radio_bearer_stats_t* sm_rb = &data->rb[i]; /* TX */ sm_rb->txpdu_pkts = rb_rlc.txpdu_pkts; sm_rb->txpdu_bytes = rb_rlc.txpdu_bytes; /* aggregated amount of transmitted bytes in RLC PDUs */ sm_rb->txpdu_wt_ms += rb_rlc.txsdu_avg_time_to_tx; /* aggregated head-of-line tx packet waiting time to be transmitted (i.e. send to the MAC layer) */ sm_rb->txpdu_dd_pkts = rb_rlc.txpdu_dd_pkts; /* aggregated number of dropped or discarded tx packets by RLC */ sm_rb->txpdu_dd_bytes = rb_rlc.txpdu_dd_bytes; /* aggregated amount of bytes dropped or discarded tx packets by RLC */ sm_rb->txpdu_retx_pkts = rb_rlc.txpdu_retx_pkts; /* aggregated number of tx pdus/pkts to be re-transmitted (only applicable to RLC AM) */ sm_rb->txpdu_retx_bytes = rb_rlc.txpdu_retx_bytes ; /* aggregated amount of bytes to be re-transmitted (only applicable to RLC AM) */ sm_rb->txpdu_segmented = rb_rlc.txpdu_segmented ; /* aggregated number of segmentations */ sm_rb->txpdu_status_pkts = rb_rlc.txpdu_status_pkts ; /* aggregated number of tx status pdus/pkts (only applicable to RLC AM) */ sm_rb->txpdu_status_bytes = rb_rlc.txpdu_status_bytes ; /* aggregated amount of tx status bytes (only applicable to RLC AM) */ sm_rb->txbuf_occ_bytes = rb_rlc.txbuf_occ_bytes ; /* current tx buffer occupancy in terms of amount of bytes (average: NOT IMPLEMENTED) */ sm_rb->txbuf_occ_pkts = rb_rlc.txbuf_occ_pkts ; /* current tx buffer occupancy in terms of number of packets (average: NOT IMPLEMENTED) */ /* RX */ sm_rb->rxpdu_pkts = rb_rlc.rxpdu_pkts ; /* aggregated number of received RLC PDUs */ sm_rb->rxpdu_bytes = rb_rlc.rxpdu_bytes ; /* amount of bytes received by the RLC */ sm_rb->rxpdu_dup_pkts = rb_rlc.rxpdu_dup_pkts ; /* aggregated number of duplicate packets */ sm_rb->rxpdu_dup_bytes = rb_rlc.rxpdu_dup_bytes ; /* aggregated amount of duplicated bytes */ sm_rb->rxpdu_dd_pkts = rb_rlc.rxpdu_dd_pkts ; /* aggregated number of rx packets dropped or discarded by RLC */ sm_rb->rxpdu_dd_bytes = rb_rlc.rxpdu_dd_bytes ; /* aggregated amount of rx bytes dropped or discarded by RLC */ sm_rb->rxpdu_ow_pkts = rb_rlc.rxpdu_ow_pkts ; /* aggregated number of out of window received RLC pdu */ sm_rb->rxpdu_ow_bytes = rb_rlc.rxpdu_ow_bytes ; /* aggregated number of out of window bytes received RLC pdu */ sm_rb->rxpdu_status_pkts = rb_rlc.rxpdu_status_pkts ; /* aggregated number of rx status pdus/pkts (only applicable to RLC AM) */ sm_rb->rxpdu_status_bytes = rb_rlc.rxpdu_status_bytes ; /* aggregated amount of rx status bytes (only applicable to RLC AM) */ sm_rb->rxbuf_occ_bytes = rb_rlc.rxbuf_occ_bytes ; /* current rx buffer occupancy in terms of amount of bytes (average: NOT IMPLEMENTED) */ sm_rb->rxbuf_occ_pkts = rb_rlc.rxbuf_occ_pkts ; /* current rx buffer occupancy in terms of number of packets (average: NOT IMPLEMENTED) */ /* TX */ sm_rb->txsdu_pkts = rb_rlc.txsdu_pkts ; /* number of SDUs delivered */ sm_rb->txsdu_bytes = rb_rlc.txsdu_bytes ; /* number of bytes of SDUs delivered */ /* RX */ sm_rb->rxsdu_pkts = rb_rlc.rxsdu_pkts ; /* number of SDUs received */ sm_rb->rxsdu_bytes = rb_rlc.rxsdu_bytes ; /* number of bytes of SDUs received */ sm_rb->rxsdu_dd_pkts = rb_rlc.rxsdu_dd_pkts ; /* number of dropped or discarded SDUs */ sm_rb->rxsdu_dd_bytes = rb_rlc.rxsdu_dd_bytes ; /* number of bytes of SDUs dropped or discarded */ sm_rb->mode = rb_rlc.mode; /* 0: RLC AM, 1: RLC UM, 2: RLC TM */ sm_rb->rnti = rnti; sm_rb->rbid = rb_id; ++i; } } } static void read_pdcp_sm(pdcp_ind_msg_t* data) { assert(data != NULL); //assert(0!=0 && "Calling PDCP"); // for the moment and while we don't have a split base station, we use the // MAC structures to obtain the RNTIs which we use to query the PDCP NR_UEs_t *UE_info = &RC.nrmac[mod_id]->UE_info; uint32_t const act_rb = num_act_rb(UE_info); data->len = act_rb; data->tstamp = time_now_us(); // data->slot = 0; if(data->len > 0){ data->rb = calloc(data->len , sizeof(pdcp_radio_bearer_stats_t)); assert(data->rb != NULL && "Memory exhausted!"); } size_t i = 0; UE_iterator(UE_info->list, UE) { const int rnti = UE->rnti; for(size_t rb_id = 1; rb_id < 6; ++rb_id){ nr_pdcp_statistics_t pdcp = {0}; const int srb_flag = 0; const bool rc = nr_pdcp_get_statistics(rnti, srb_flag, rb_id, &pdcp); if(!rc) continue; pdcp_radio_bearer_stats_t* rd = &data->rb[i]; rd->txpdu_pkts = pdcp.txpdu_pkts ; /* aggregated number of tx packets */ rd->txpdu_bytes = pdcp.txpdu_bytes; /* aggregated bytes of tx packets */ rd->txpdu_sn = pdcp.txpdu_sn ; /* current sequence number of last tx packet (or TX_NEXT) */ rd->rxpdu_pkts = pdcp.rxpdu_pkts ; /* aggregated number of rx packets */ rd->rxpdu_bytes = pdcp.rxpdu_bytes ; /* aggregated bytes of rx packets */ rd->rxpdu_sn = pdcp.rxpdu_sn ; /* current sequence number of last rx packet (or RX_NEXT) */ rd->rxpdu_oo_pkts = pdcp.rxpdu_oo_pkts ; /* aggregated number of out-of-order rx pkts (or RX_REORD) */ rd->rxpdu_oo_bytes = pdcp.rxpdu_oo_bytes ; /* aggregated amount of out-of-order rx bytes */ rd->rxpdu_dd_pkts = pdcp.rxpdu_dd_pkts ; /* aggregated number of duplicated discarded packets (or dropped packets because of other reasons such as integrity failure) (or RX_DELIV) */ rd->rxpdu_dd_bytes = pdcp.rxpdu_dd_bytes; /* aggregated amount of discarded packets' bytes */ rd->rxpdu_ro_count = pdcp.rxpdu_ro_count ; /* this state variable indicates the COUNT value following the COUNT value associated with the PDCP Data PDU which triggered t-Reordering. (RX_REORD) */ rd->txsdu_pkts = pdcp.txsdu_pkts ; /* number of SDUs delivered */ rd->txsdu_bytes = pdcp.txsdu_bytes ; /* number of bytes of SDUs delivered */ rd->rxsdu_pkts = pdcp.rxsdu_pkts ; /* number of SDUs received */ rd->rxsdu_bytes = pdcp.rxsdu_bytes ; /* number of bytes of SDUs received */ rd->rnti = rnti; rd->mode = pdcp.mode; /* 0: PDCP AM, 1: PDCP UM, 2: PDCP TM */ rd->rbid = rb_id; ++i; } } } static void read_gtp_sm(gtp_ind_msg_t* data) { assert(data != NULL); data->tstamp = time_now_us(); NR_UEs_t *UE_info = &RC.nrmac[mod_id]->UE_info; size_t num_ues = 0; UE_iterator(UE_info->list, ue) { if (ue) num_ues += 1; } data->len = num_ues; if(data->len > 0){ data->ngut = calloc(data->len, sizeof(gtp_ngu_t_stats_t) ); assert(data->ngut != NULL); } size_t i = 0; UE_iterator(UE_info->list, UE) { uint16_t const rnti = UE->rnti; struct rrc_gNB_ue_context_s *ue_context_p = NULL; ue_context_p = rrc_gNB_get_ue_context(RC.nrrrc[mod_id], rnti); if (ue_context_p != NULL) { int nb_pdu_session = ue_context_p->ue_context.setup_pdu_sessions - 1; data->ngut[i].rnti = ue_context_p->ue_context.rnti; data->ngut[i].teidgnb = ue_context_p->ue_context.pduSession[nb_pdu_session].param.gtp_teid; // TODO: one PDU session has multiple QoS Flow int nb_qos_flow = ue_context_p->ue_context.pduSession[nb_pdu_session].param.nb_qos -1; data->ngut[i].qfi = ue_context_p->ue_context.pduSession[nb_pdu_session].param.qos[nb_qos_flow].qfi; // TODO: not sure for the upf tunnel id data->ngut[i].teidupf = ue_context_p->ue_context.gnb_gtp_teid[0]; } else { LOG_W(NR_RRC,"rrc_gNB_get_ue_context return NULL\n"); if (data->ngut != NULL) free(data->ngut); } i++; } } static void read_kpm_sm(kpm_ind_data_t* data) { assert(data != NULL); // Fill KPM indication header kpm_ind_hdr_t* hdr = &data->hdr; int64_t t = time_now_us(); hdr->collectStartTime = t / 1000000; // needs to be truncated to 32 bits to arrive to a resolution of seconds hdr->fileFormatversion = NULL; hdr->senderName = NULL; hdr->senderType = NULL; hdr->vendorName = NULL; // Fill KPM indication message kpm_ind_msg_t* msg = &data->msg; // TODO: assign MeaData_len according to eventPeriod/granulPeriod from the action definition or subscription request msg->MeasData_len = 1; if (msg->MeasData_len > 0) { msg->MeasData = calloc(msg->MeasData_len, sizeof(adapter_MeasDataItem_t)); assert(msg->MeasData != NULL && "Memory exhausted" ); } // get the number of connected UEs NR_UEs_t *UE_info = &RC.nrmac[mod_id]->UE_info; size_t num_ues = 0; UE_iterator(UE_info->list, ue) { if (ue) num_ues += 1; } if (num_ues > 0) { // get the info to calculate the resource utilization NR_ServingCellConfigCommon_t *scc = RC.nrmac[mod_id]->common_channels[0].ServingCellConfigCommon; int cur_slot = RC.nrmac[mod_id]->slot; // int num_dl_slots = scc->tdd_UL_DL_ConfigurationCommon->pattern1.nrofDownlinkSlots; // get total number of available resource blocks int n_rb_sched = 0; if (UE_info->list[0] != NULL) { /* Get bwpSize and TDA from the first UE */ /* This is temporary and it assumes all UEs have the same BWP and TDA*/ NR_UE_info_t *UE = UE_info->list[0]; NR_UE_sched_ctrl_t *sched_ctrl = &UE->UE_sched_ctrl; NR_UE_DL_BWP_t *current_BWP = &UE->current_DL_BWP; const int tda = get_dl_tda(RC.nrmac[mod_id], scc, cur_slot); int startSymbolIndex, nrOfSymbols; const struct NR_PDSCH_TimeDomainResourceAllocationList *tdaList = current_BWP->tdaList; AssertFatal(tda < tdaList->list.count, "time_domain_allocation %d>=%d\n", tda, tdaList->list.count); const int startSymbolAndLength = tdaList->list.array[tda]->startSymbolAndLength; SLIV2SL(startSymbolAndLength, &startSymbolIndex, &nrOfSymbols); const int coresetid = sched_ctrl->coreset->controlResourceSetId; const uint16_t bwpSize = coresetid == 0 ? RC.nrmac[mod_id]->cset0_bwp_size : current_BWP->BWPSize; const uint16_t BWPStart = coresetid == 0 ? RC.nrmac[mod_id]->cset0_bwp_start : current_BWP->BWPStart; const uint16_t slbitmap = SL_to_bitmap(startSymbolIndex, nrOfSymbols); uint16_t *vrb_map = RC.nrmac[mod_id]->common_channels[0].vrb_map; uint16_t rballoc_mask[bwpSize]; for (int i = 0; i < bwpSize; i++) { // calculate mask: init with "NOT" vrb_map: // if any RB in vrb_map is blocked (1), the current RBG will be 0 rballoc_mask[i] = (~vrb_map[i + BWPStart]) & 0x3fff; //bitwise not and 14 symbols // if all the pdsch symbols are free if ((rballoc_mask[i] & slbitmap) == slbitmap) { n_rb_sched++; } } } // TODO: assign the MeasData every granulPeriod for (size_t i = 0; i < msg->MeasData_len; i++) { adapter_MeasDataItem_t* item = &msg->MeasData[i]; // TODO: assign measRecord_len according to // (1) the length of Measurements Information List IE (format1) or // (2) Measurements Information Condition UE List IE (format2) // from the action definition or subscription request // TODO: only support KPM format 1, and it only can handle one UE's information // assume to record one data: DL resource utilization item->measRecord_len = 1; if (item->measRecord_len > 0) { item->measRecord = calloc(item->measRecord_len, sizeof(adapter_MeasRecord_t)); assert(item->measRecord != NULL && "Memory exhausted"); } UE_iterator(UE_info->list, UE) { int dl_rb_usage = 0; if (is_xlsch_in_slot(RC.nrmac[mod_id]->dlsch_slot_bitmap[cur_slot / 64], cur_slot)) dl_rb_usage = UE->mac_stats.dl.current_rbs*100/n_rb_sched; // TODO: go through the measRecord according to the Measurements Information (format 1) or Information Condition UE (format 2) List IE adapter_MeasRecord_t *record_PrbDlUsage = &item->measRecord[0]; record_PrbDlUsage->type = MeasRecord_int; record_PrbDlUsage->int_val = dl_rb_usage; } // incompleteFlag = -1, the data is reliable item->incompleteFlag = -1; } // TODO: assign MeasInfo_len according to the action definition or subscription request msg->MeasInfo_len = 1; if (msg->MeasInfo_len > 0) { msg->MeasInfo = calloc(msg->MeasInfo_len, sizeof(MeasInfo_t)); assert(msg->MeasInfo != NULL && "Memory exhausted" ); MeasInfo_t* info = &msg->MeasInfo[0]; info->meas_type = KPM_V2_MEASUREMENT_TYPE_NAME; char* measName = "PrbDlUsage"; info->measName.len = strlen(measName); info->measName.buf = malloc(strlen(measName)); assert(info->measName.buf != NULL && "memory exhausted"); memcpy(info->measName.buf, measName, msg->MeasInfo[0].measName.len); // TODO: assign labelInfo_len according to the action definition (?) info->labelInfo_len = 1; info->labelInfo = calloc(info->labelInfo_len, sizeof(adapter_LabelInfoItem_t)); assert(info->labelInfo != NULL && "memory exhausted"); adapter_LabelInfoItem_t* label = &info->labelInfo[0]; label->noLabel = calloc(1, sizeof(long)); assert(label->noLabel != NULL && "memory exhausted"); *(label->noLabel) = 0; } } else { for (size_t i = 0; i < msg->MeasData_len; i++) { adapter_MeasDataItem_t* item = &msg->MeasData[i]; item->measRecord_len = 1; if (item->measRecord_len > 0) { item->measRecord = calloc(item->measRecord_len, sizeof(adapter_MeasRecord_t)); assert(item->measRecord != NULL && "Memory exhausted"); } adapter_MeasRecord_t *record_nodata = &item->measRecord[0]; record_nodata->type = MeasRecord_int; record_nodata->int_val = 0; // incompleteFlag = 0, the data is not reliable item->incompleteFlag = 0; } msg->MeasInfo_len = 0; msg->MeasInfo = NULL; } msg->granulPeriod = NULL; } static void read_RAN(sm_ag_if_rd_t* data) { assert(data != NULL); assert(data->type == MAC_STATS_V0 || data->type == RLC_STATS_V0 || data->type == PDCP_STATS_V0 || data->type == GTP_STATS_V0 || data->type == KPM_STATS_V0 ); if(data->type == MAC_STATS_V0 ){ read_mac_sm(&data->mac_stats.msg); }else if(data->type == RLC_STATS_V0) { read_rlc_sm(&data->rlc_stats.msg); } else if(data->type == PDCP_STATS_V0){ read_pdcp_sm(&data->pdcp_stats.msg); } else if(data->type == GTP_STATS_V0){ read_gtp_sm(&data->gtp_stats.msg); } else if(data->type == KPM_STATS_V0){ read_kpm_sm(&data->kpm_stats); } else { assert(0!=0 && "Unknown data type!"); } } static sm_ag_if_ans_t write_RAN(sm_ag_if_wr_t const* data) { assert(data != NULL); assert(0!=0 && "Not implemented"); sm_ag_if_ans_t ans = {.type = MAC_AGENT_IF_CTRL_ANS_V0 }; return ans; } int main( int argc, char **argv ) { int ru_id, CC_id = 0; start_background_system(); ///static configuration for NR at the moment if ( load_configmodule(argc,argv,CONFIG_ENABLECMDLINEONLY) == NULL) { exit_fun("[SOFTMODEM] Error, configuration module init failed\n"); } set_softmodem_sighandler(); #ifdef DEBUG_CONSOLE setvbuf(stdout, NULL, _IONBF, 0); setvbuf(stderr, NULL, _IONBF, 0); #endif mode = normal_txrx; memset(&openair0_cfg[0],0,sizeof(openair0_config_t)*MAX_CARDS); memset(tx_max_power,0,sizeof(int)*MAX_NUM_CCs); logInit(); set_latency_target(); printf("Reading in command-line options\n"); get_options (); EPC_MODE_ENABLED = !IS_SOFTMODEM_NOS1; if (CONFIG_ISFLAGSET(CONFIG_ABORT) ) { fprintf(stderr,"Getting configuration failed\n"); exit(-1); } openair0_cfg[0].threequarter_fs = threequarter_fs; if (get_softmodem_params()->do_ra) AssertFatal(get_softmodem_params()->phy_test == 0,"RA and phy_test are mutually exclusive\n"); if (get_softmodem_params()->sa) AssertFatal(get_softmodem_params()->phy_test == 0,"Standalone mode and phy_test are mutually exclusive\n"); #if T_TRACER T_Config_Init(); #endif //randominit (0); set_taus_seed (0); printf("configuring for RAU/RRU\n"); if (opp_enabled ==1) { reset_opp_meas(); } cpuf=get_cpu_freq_GHz(); itti_init(TASK_MAX, tasks_info); // initialize mscgen log after ITTI init_opt(); if(PDCP_USE_NETLINK && !IS_SOFTMODEM_NOS1) { netlink_init(); if (get_softmodem_params()->nsa) { init_pdcp(); } } #ifndef PACKAGE_VERSION # define PACKAGE_VERSION "UNKNOWN-EXPERIMENTAL" #endif LOG_I(HW, "Version: %s\n", PACKAGE_VERSION); if (RC.nb_nr_L1_inst > 0) RCconfig_NR_L1(); // don't create if node doesn't connect to RRC/S1/GTP int ret=create_gNB_tasks(1); AssertFatal(ret==0,"cannot create ITTI tasks\n"); /* Start the agent. If it is turned off in the configuration, it won't start */ /* RCconfig_nr_flexran(); for (i = 0; i < RC.nb_nr_L1_inst; i++) { flexran_agent_start(i); } */ // init UE_PF_PO and mutex lock pthread_mutex_init(&ue_pf_po_mutex, NULL); memset (&UE_PF_PO[0][0], 0, sizeof(UE_PF_PO_t)*NUMBER_OF_UE_MAX*MAX_NUM_CCs); mlockall(MCL_CURRENT | MCL_FUTURE); pthread_cond_init(&sync_cond,NULL); pthread_mutex_init(&sync_mutex, NULL); usleep(1000); if (NFAPI_MODE) { printf("NFAPI*** - mutex and cond created - will block shortly for completion of PNF connection\n"); pthread_cond_init(&sync_cond,NULL); pthread_mutex_init(&sync_mutex, NULL); } const char *nfapi_mode_str = "<UNKNOWN>"; switch(NFAPI_MODE) { case 0: nfapi_mode_str = "MONOLITHIC"; break; case 1: nfapi_mode_str = "PNF"; break; case 2: nfapi_mode_str = "VNF"; break; default: nfapi_mode_str = "<UNKNOWN NFAPI MODE>"; break; } printf("NFAPI MODE:%s\n", nfapi_mode_str); printf("START MAIN THREADS\n"); // start the main threads number_of_cards = 1; printf("RC.nb_nr_L1_inst:%d\n", RC.nb_nr_L1_inst); if (RC.nb_nr_L1_inst > 0) { printf("Initializing gNB threads single_thread_flag:%d wait_for_sync:%d\n", single_thread_flag,wait_for_sync); init_gNB(single_thread_flag,wait_for_sync); } printf("wait_gNBs()\n"); wait_gNBs(); printf("About to Init RU threads RC.nb_RU:%d\n", RC.nb_RU); int sl_ahead=6; if (RC.nb_RU >0) { printf("Initializing RU threads\n"); init_NR_RU(get_softmodem_params()->rf_config_file); for (ru_id=0; ru_id<RC.nb_RU; ru_id++) { RC.ru[ru_id]->rf_map.card=0; RC.ru[ru_id]->rf_map.chain=CC_id+chain_offset; if (ru_id==0) sl_ahead = RC.ru[ru_id]->sl_ahead; else AssertFatal(RC.ru[ru_id]->sl_ahead != RC.ru[0]->sl_ahead,"RU %d has different sl_ahead %d than RU 0 %d\n",ru_id,RC.ru[ru_id]->sl_ahead,RC.ru[0]->sl_ahead); } } config_sync_var=0; ////////////////////////////////// ////////////////////////////////// //// Init the E2 Agent sleep(2); const gNB_RRC_INST* rrc = RC.nrrrc[mod_id]; assert(rrc != NULL && "rrc cannot be NULL"); const int mcc = rrc->configuration.mcc[0]; const int mnc = rrc->configuration.mnc[0]; const int mnc_digit_len = rrc->configuration.mnc_digit_length[0]; const ngran_node_t node_type = rrc->node_type; int nb_id = 0; int cu_du_id = 0; if (node_type == ngran_gNB) { nb_id = rrc->configuration.cell_identity; } else if (node_type == ngran_gNB_DU) { cu_du_id = rrc->configuration.cell_identity; nb_id = rrc->configuration.cell_identity; } else if (node_type == ngran_gNB_CU) { cu_du_id = rrc->node_id; nb_id = rrc->configuration.cell_identity; } else { LOG_E(NR_RRC, "not supported ran type detect\n"); } sm_io_ag_t io = {.read = read_RAN, .write = write_RAN}; printf("[E2 NODE]: mcc = %d mnc = %d mnc_digit = %d nd_id = %d \n", mcc, mnc, mnc_digit_len, nb_id); // TODO: need to fix, parse the FlexRIC config in runtime int const agent_argc = 1; char** agent_argv = NULL; fr_args_t ric_args = init_fr_args(agent_argc, agent_argv); // TODO: integrate with oai config char* conf_dir = getenv("FLEXRIC_CONF"); char* lib_dir = getenv("FLEXRIC_LIB_DIR"); if (conf_dir != NULL) strcpy(ric_args.conf_file, conf_dir); else strcpy(ric_args.conf_file, "/usr/local/etc/flexric/flexric.conf"); if (lib_dir != NULL) strcpy(ric_args.libs_dir, lib_dir); else strcpy(ric_args.libs_dir, "/usr/local/lib/flexric/"); init_agent_api( mcc, mnc, mnc_digit_len, nb_id, cu_du_id, node_type, io, &ric_args); ////////////////////////////////// ////////////////////////////////// if (NFAPI_MODE==NFAPI_MODE_PNF) { wait_nfapi_init("main?"); } if (RC.nb_nr_L1_inst > 0) { printf("wait RUs\n"); wait_RUs(); printf("ALL RUs READY!\n"); printf("RC.nb_RU:%d\n", RC.nb_RU); // once all RUs are ready initialize the rest of the gNBs ((dependence on final RU parameters after configuration) printf("ALL RUs ready - init gNBs\n"); for (int idx=0;idx<RC.nb_nr_L1_inst;idx++) RC.gNB[idx]->if_inst->sl_ahead = sl_ahead; if(IS_SOFTMODEM_DOSCOPE) { sleep(1); scopeParms_t p; p.argc=&argc; p.argv=argv; p.gNB=RC.gNB[0]; p.ru=RC.ru[0]; load_softscope("nr",&p); } if (NFAPI_MODE != NFAPI_MODE_PNF && NFAPI_MODE != NFAPI_MODE_VNF) { printf("Not NFAPI mode - call init_eNB_afterRU()\n"); init_eNB_afterRU(); } else { printf("NFAPI mode - DO NOT call init_gNB_afterRU()\n"); } printf("ALL RUs ready - ALL gNBs ready\n"); // connect the TX/RX buffers printf("Sending sync to all threads\n"); pthread_mutex_lock(&sync_mutex); sync_var=0; pthread_cond_broadcast(&sync_cond); pthread_mutex_unlock(&sync_mutex); } // wait for end of program printf("Entering ITTI signals handler\n"); printf("TYPE <CTRL-C> TO TERMINATE\n"); itti_wait_tasks_end(); printf("Returned from ITTI signal handler\n"); oai_exit=1; printf("oai_exit=%d\n",oai_exit); // cleanup if (RC.nb_nr_L1_inst > 0) stop_gNB(RC.nb_nr_L1_inst); if (RC.nb_RU > 0) stop_RU(RC.nb_RU); /* release memory used by the RU/gNB threads (incomplete), after all * threads have been stopped (they partially use the same memory) */ for (int inst = 0; inst < RC.nb_RU; inst++) { nr_phy_free_RU(RC.ru[inst]); } for (int inst = 0; inst < RC.nb_nr_L1_inst; inst++) { phy_free_nr_gNB(RC.gNB[inst]); } pthread_cond_destroy(&sync_cond); pthread_mutex_destroy(&sync_mutex); pthread_cond_destroy(&nfapi_sync_cond); pthread_mutex_destroy(&nfapi_sync_mutex); pthread_mutex_destroy(&ue_pf_po_mutex); // *** Handle per CC_id openair0 for(ru_id = 0; ru_id < RC.nb_RU; ru_id++) { if (RC.ru[ru_id]->ifdevice.trx_end_func) RC.ru[ru_id]->ifdevice.trx_end_func(&RC.ru[ru_id]->ifdevice); } logClean(); printf("Bye.\n"); return 0; }