import pandas as pd import matplotlib.pyplot as plt import os import numpy as np # Leitura do arquivo main_folder = "./" scenarios = [name for name in os.listdir(main_folder) if os.path.isdir(os.path.join(main_folder, name))] scenarios = sorted( scenarios, key=lambda x: ( x != "no_slicing", int(x.split('_')[-1]) if x.startswith('scen_') and x.split('_')[-1].isdigit() else float('inf') ) ) ue_dataframes = {} for scenario in scenarios: ue_dataframes[scenario] = {} scenario_path = main_folder + scenario cap_confs = [name for name in os.listdir(scenario_path) if os.path.isdir(os.path.join(scenario_path, name))] for cap_conf in cap_confs: ue_dataframes[scenario][cap_conf] = {} cap_path = scenario_path + '/' + cap_conf ues = [name for name in os.listdir(cap_path) if os.path.isdir(os.path.join(cap_path, name))] for ue in ues: data = [] ue_path = cap_path + '/' + ue + '/' + 'job_1.txt' ##Organização do dataframe with open(ue_path, 'r') as file: count = 0 data.append({ "Interval": 0, "Transfer": 0, "Bandwidth": 0, "Jitter": 0, "PacketsLost": 0, "TotalPackets": 0 }) for line in file: if "[ 3]" in line and "sec" in line and "MBytes" in line: parts = line.split() count += 1 print(parts) if count < 10: data.append({ "Interval": count, "Transfer": parts[5], "Bandwidth": float(parts[7]), "Jitter": parts[9] if len(parts) > 6 else None, "PacketsLost": int(parts[-2].split("/")[0]) if "/" in parts[-2] else int(parts[-3].split("/")[0]), "TotalPackets": int(parts[-2].split("/")[1]) if "/" in parts[-2] else int(parts[-2]) }) elif count < 60: data.append({ "Interval": count, "Transfer": parts[4], "Bandwidth": float(parts[6]), "Jitter": parts[8] if len(parts) > 6 else None, "PacketsLost": int(parts[-2].split("/")[0]) if "/" in parts[-2] else int(parts[-3].split("/")[0]), "TotalPackets": int(parts[-2].split("/")[1]) if "/" in parts[-2] else int(parts[-2]) }) else: break ue_dataframes[scenario][cap_conf][ue] = pd.DataFrame(data) for scenario in scenarios: pl_ue1 = [] pl_ue2 = [] scenario_path = main_folder + scenario cap_confs = [name for name in os.listdir(scenario_path) if os.path.isdir(os.path.join(scenario_path, name))] ## Configuração da capacidade dos slices cap_confs = sorted(cap_confs, key=lambda x: (x == 'no_slicing', x)) for cap_conf in cap_confs: plt.plot(ue_dataframes[scenario][cap_conf]['ue2']["Interval"], ue_dataframes[scenario][cap_conf]['ue2']["Bandwidth"], marker="o", label="UE2", color = "blue", linestyle="-") plt.plot(ue_dataframes[scenario][cap_conf]['ue1']["Interval"], ue_dataframes[scenario][cap_conf]['ue1']["Bandwidth"], marker="o", label="UE1", color = "red", linestyle="--") y_ticks = np.arange(0, max(ue_dataframes[scenario][cap_conf]['ue2']["Bandwidth"].max(), ue_dataframes[scenario][cap_conf]['ue1']["Bandwidth"].max()) + 10, 10) # Intervalo de 2 Mbps plt.yticks(y_ticks) # Define os valores do eixo Y com intervalos mais detalhados plt.title(scenario) plt.xlabel("Tempo (s)") plt.ylabel("Taxa oferecida (Mbps)") plt.grid(which="both", linestyle="--", linewidth=0.5, alpha=0.7) # Grelha mais sutil plt.tight_layout() # Garante que todos os elementos estejam visíveis plt.legend() plt.tight_layout() pl_ue1.append((ue_dataframes[scenario][cap_conf]['ue1']["PacketsLost"].sum()/ue_dataframes[scenario][cap_conf]['ue1']["TotalPackets"].sum())*100) pl_ue2.append((ue_dataframes[scenario][cap_conf]['ue2']["PacketsLost"].sum()/ue_dataframes[scenario][cap_conf]['ue2']["TotalPackets"].sum())*100) plt.show() # Configurar a posição das barras no eixo x x = np.arange(len(cap_confs)) # Posições das scenarios largura = 0.4 # Largura das barras # Criar as barras plt.bar(x - largura / 2, pl_ue1, width=largura, label='UE1', color='red') # Barras para UE1 plt.bar(x + largura / 2, pl_ue2, width=largura, label='UE2', color='blue') # Barras para UE2 # Adicionar rótulos e título plt.xlabel('Diferentes configurações de capacidade') plt.ylabel('Perda de pacote (%)') plt.title('Perda de Pacotes para Diferentes Configurações de Capacidade') plt.xticks(x, cap_confs) # Ajustar rótulos do eixo x plt.legend() # Adicionar legenda # Exibir o gráfico plt.tight_layout() plt.show()