import numpy as np import pandas as pd import keras img_rows, img_cols = 30, 20 num_classes = 36 def data_prep(raw): out_y = raw.label.values.reshape(-1, 1) num_images = raw.shape[0] x_as_array = raw.values[:,1:] x_shaped_array = x_as_array.reshape(num_images, img_rows, img_cols, 1) out_x = x_shaped_array / 255 return out_x[:,:,:,0], out_y def load_data(): df = pd.read_csv("data/Mercosul_56_30x20.csv") df = df.sample(frac=1, random_state=10) x, y = data_prep(df) train_samples = int(y.shape[0] * 0.75) x_train, x_test = x[:train_samples, :], x[train_samples:, :] y_train, y_test = y[:train_samples], y[train_samples:] return (x_train, y_train), (x_test, y_test)